Cargando…

Origin of adaptations to open environments and social behaviour in sabretoothed cats from the northeastern border of the Tibetan Plateau

The iconic sabretooth Homotherium is thought to have hunted cooperatively, but the origin of this behaviour and correlated morphological adaptations are largely unexplored. Here we report the most primitive species of Amphimachairodus (Amphimachairodus hezhengensis sp. nov.), a member of Machairodon...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiangzuo, Qigao, Werdelin, Lars, Sanisidro, Oscar, Yang, Rong, Fu, Jiao, Li, Shijie, Wang, Shiqi, Deng, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113030/
https://www.ncbi.nlm.nih.gov/pubmed/37072045
http://dx.doi.org/10.1098/rspb.2023.0019
Descripción
Sumario:The iconic sabretooth Homotherium is thought to have hunted cooperatively, but the origin of this behaviour and correlated morphological adaptations are largely unexplored. Here we report the most primitive species of Amphimachairodus (Amphimachairodus hezhengensis sp. nov.), a member of Machairodontini basal to Homotherium, from the Linxia Basin, northeastern border of the Tibetan Plateau (9.8–8.7 Ma). The long snout, laterally oriented and posteriorly located orbit of Amphimachairodus suggest a better ability to observe the surrounding environment, rather than targeting single prey, pointing to an adaptation to the open environment or social behaviour. A pathological forepaw of Amphimachairodus provides direct evidence of partner care. Our analyses of trait evolutionary rates support that traits correlated with killing behaviour and open environment adaptation evolved prior to other traits, suggesting that changes in hunting behaviour may be the major evolutionary driver in the early evolution of the lineage. A. hezhengensis represents one of the most important transitions in the evolution of Machairodontini, leading to adaptation in open environments and contributing to their further dispersal and radiation worldwide. This rapid morphological change is likely to be correlated with increasingly arid environments caused by the rise of the Tibetan Plateau, and competition from abundant large carnivores in this area.