Cargando…

A Nonrandomized Trial of the Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in Type 2 Diabetic Subjects

BACKGROUND: Diabetes mellitus has reached global epidemic proportions, with type 2 diabetes (T2DM) comprising more than 90% of all subjects with diabetes. Cardiovascular autonomic neuropathy (CAN) frequently occurs in T2DM. Heart rate variability (HRV) reflects a neural balance between the sympathet...

Descripción completa

Detalles Bibliográficos
Autores principales: Adams, Jose A., Lopez, Jose R., Banderas, Veronica, Sackner, Marvin A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113059/
https://www.ncbi.nlm.nih.gov/pubmed/37082380
http://dx.doi.org/10.1155/2023/4454396
_version_ 1785027743233081344
author Adams, Jose A.
Lopez, Jose R.
Banderas, Veronica
Sackner, Marvin A.
author_facet Adams, Jose A.
Lopez, Jose R.
Banderas, Veronica
Sackner, Marvin A.
author_sort Adams, Jose A.
collection PubMed
description BACKGROUND: Diabetes mellitus has reached global epidemic proportions, with type 2 diabetes (T2DM) comprising more than 90% of all subjects with diabetes. Cardiovascular autonomic neuropathy (CAN) frequently occurs in T2DM. Heart rate variability (HRV) reflects a neural balance between the sympathetic and parasympathetic autonomic nervous systems (ANS) and a marker of CAN. Reduced HRV has been shown in T2DM and improved by physical activity and exercise. External addition of pulses to the circulation, as accomplished by a passive simulated jogging device (JD), restores HRV in nondiseased sedentary subjects after a single session. We hypothesized that application of JD for a longer period (7 days) might improve HRV in T2DM participants. METHODS: We performed a nonrandomized study on ten T2DM subjects (age range 44-73 yrs) who were recruited and asked to use a physical activity intervention, a passive simulated jogging device (JD) for 7 days. JD moves the feet in a repetitive and alternating manner; the upward movement of the pedal is followed by a downward movement of the forefoot tapping against a semirigid bumper to simulate the tapping of feet against the ground during jogging. Heart rate variability (HRV) analysis was performed using an electrocardiogram in each subject in seated posture on day 1 (baseline, BL), after seven days of JD (JD7), and seven days after discontinuation of JD (Post-JD). Time domain variables were computed, viz., standard deviation of all normal RR intervals (SDNN), standard deviation of the delta of all RR intervals (SDΔNN), and the square root of the mean of the sum of the squares of differences between adjacent RR intervals (RMSSD). Frequency domain measures were determined using a standard Fast Fourier spectral analysis, as well as the parameters of the Poincaré plots (SD1 and SD2). RESULTS: Seven days of JD significantly increased SDNN, SDΔNN, RMSSD, and both SD1 and SD2 from baseline values. The latter parameters remained increased Post-JD. JD did not modify the frequency domain measures of HRV. CONCLUSION: A passive simulated jogging device increased the time domain and Poincaré variables of HRV in T2DM. This intervention provided effortless physical activity as a novel method to harness the beneficial effects of passive physical activity for improving HRV in T2DM subjects.
format Online
Article
Text
id pubmed-10113059
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-101130592023-04-19 A Nonrandomized Trial of the Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in Type 2 Diabetic Subjects Adams, Jose A. Lopez, Jose R. Banderas, Veronica Sackner, Marvin A. J Diabetes Res Research Article BACKGROUND: Diabetes mellitus has reached global epidemic proportions, with type 2 diabetes (T2DM) comprising more than 90% of all subjects with diabetes. Cardiovascular autonomic neuropathy (CAN) frequently occurs in T2DM. Heart rate variability (HRV) reflects a neural balance between the sympathetic and parasympathetic autonomic nervous systems (ANS) and a marker of CAN. Reduced HRV has been shown in T2DM and improved by physical activity and exercise. External addition of pulses to the circulation, as accomplished by a passive simulated jogging device (JD), restores HRV in nondiseased sedentary subjects after a single session. We hypothesized that application of JD for a longer period (7 days) might improve HRV in T2DM participants. METHODS: We performed a nonrandomized study on ten T2DM subjects (age range 44-73 yrs) who were recruited and asked to use a physical activity intervention, a passive simulated jogging device (JD) for 7 days. JD moves the feet in a repetitive and alternating manner; the upward movement of the pedal is followed by a downward movement of the forefoot tapping against a semirigid bumper to simulate the tapping of feet against the ground during jogging. Heart rate variability (HRV) analysis was performed using an electrocardiogram in each subject in seated posture on day 1 (baseline, BL), after seven days of JD (JD7), and seven days after discontinuation of JD (Post-JD). Time domain variables were computed, viz., standard deviation of all normal RR intervals (SDNN), standard deviation of the delta of all RR intervals (SDΔNN), and the square root of the mean of the sum of the squares of differences between adjacent RR intervals (RMSSD). Frequency domain measures were determined using a standard Fast Fourier spectral analysis, as well as the parameters of the Poincaré plots (SD1 and SD2). RESULTS: Seven days of JD significantly increased SDNN, SDΔNN, RMSSD, and both SD1 and SD2 from baseline values. The latter parameters remained increased Post-JD. JD did not modify the frequency domain measures of HRV. CONCLUSION: A passive simulated jogging device increased the time domain and Poincaré variables of HRV in T2DM. This intervention provided effortless physical activity as a novel method to harness the beneficial effects of passive physical activity for improving HRV in T2DM subjects. Hindawi 2023-04-11 /pmc/articles/PMC10113059/ /pubmed/37082380 http://dx.doi.org/10.1155/2023/4454396 Text en Copyright © 2023 Jose A. Adams et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Adams, Jose A.
Lopez, Jose R.
Banderas, Veronica
Sackner, Marvin A.
A Nonrandomized Trial of the Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in Type 2 Diabetic Subjects
title A Nonrandomized Trial of the Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in Type 2 Diabetic Subjects
title_full A Nonrandomized Trial of the Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in Type 2 Diabetic Subjects
title_fullStr A Nonrandomized Trial of the Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in Type 2 Diabetic Subjects
title_full_unstemmed A Nonrandomized Trial of the Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in Type 2 Diabetic Subjects
title_short A Nonrandomized Trial of the Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in Type 2 Diabetic Subjects
title_sort nonrandomized trial of the effects of passive simulated jogging on short-term heart rate variability in type 2 diabetic subjects
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113059/
https://www.ncbi.nlm.nih.gov/pubmed/37082380
http://dx.doi.org/10.1155/2023/4454396
work_keys_str_mv AT adamsjosea anonrandomizedtrialoftheeffectsofpassivesimulatedjoggingonshorttermheartratevariabilityintype2diabeticsubjects
AT lopezjoser anonrandomizedtrialoftheeffectsofpassivesimulatedjoggingonshorttermheartratevariabilityintype2diabeticsubjects
AT banderasveronica anonrandomizedtrialoftheeffectsofpassivesimulatedjoggingonshorttermheartratevariabilityintype2diabeticsubjects
AT sacknermarvina anonrandomizedtrialoftheeffectsofpassivesimulatedjoggingonshorttermheartratevariabilityintype2diabeticsubjects
AT adamsjosea nonrandomizedtrialoftheeffectsofpassivesimulatedjoggingonshorttermheartratevariabilityintype2diabeticsubjects
AT lopezjoser nonrandomizedtrialoftheeffectsofpassivesimulatedjoggingonshorttermheartratevariabilityintype2diabeticsubjects
AT banderasveronica nonrandomizedtrialoftheeffectsofpassivesimulatedjoggingonshorttermheartratevariabilityintype2diabeticsubjects
AT sacknermarvina nonrandomizedtrialoftheeffectsofpassivesimulatedjoggingonshorttermheartratevariabilityintype2diabeticsubjects