Cargando…
Dynamic self-organisation and pattern formation by magnon-polarons
Magnetic materials play a vital role in energy-efficient data storage technologies, combining very fast switching with long-term retention of information. However, it has been shown that, at very short time scales, magnetisation dynamics become chaotic due to internal instabilities, resulting in inc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113182/ https://www.ncbi.nlm.nih.gov/pubmed/37072420 http://dx.doi.org/10.1038/s41467-023-37919-6 |
Sumario: | Magnetic materials play a vital role in energy-efficient data storage technologies, combining very fast switching with long-term retention of information. However, it has been shown that, at very short time scales, magnetisation dynamics become chaotic due to internal instabilities, resulting in incoherent spin-wave excitations that ultimately destroy magnetic ordering. Here, contrary to expectations, we show that such chaos gives rise to a periodic pattern of reversed magnetic domains, with a feature size far smaller than the spatial extent of the excitation. We explain this pattern as a result of phase-synchronisation of magnon-polaron quasiparticles, driven by strong coupling of magnetic and elastic modes. Our results reveal not only the peculiar formation and evolution of magnon-polarons at short time-scales, but also present an alternative mechanism of magnetisation reversal driven by coherent packets of short-wavelength magnetoelastic waves. |
---|