Cargando…
Dynamic hierarchical multi-scale fusion network with axial MLP for medical image segmentation
Medical image segmentation provides various effective methods for accuracy and robustness of organ segmentation, lesion detection, and classification. Medical images have fixed structures, simple semantics, and diverse details, and thus fusing rich multi-scale features can augment segmentation accur...
Autores principales: | Cheng, Zhikun, Wang, Liejun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113245/ https://www.ncbi.nlm.nih.gov/pubmed/37072483 http://dx.doi.org/10.1038/s41598-023-32813-z |
Ejemplares similares
-
HEA-Net: Attention and MLP Hybrid Encoder Architecture for Medical Image Segmentation
por: An, Lijing, et al.
Publicado: (2022) -
HMT-Net: Transformer and MLP Hybrid Encoder for Skin Disease Segmentation
por: Yang, Sen, et al.
Publicado: (2023) -
MLP-based classification of COVID-19 and skin diseases
por: Zhang, Ruize, et al.
Publicado: (2023) -
Transformer and group parallel axial attention co-encoder for medical image segmentation
por: Li, Chaoqun, et al.
Publicado: (2022) -
Multi-scale feature progressive fusion network for remote sensing image change detection
por: Lu, Di, et al.
Publicado: (2022)