Cargando…
PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces
Proteins are essential molecular building blocks of life, responsible for most biological functions as a result of their specific molecular interactions. However, predicting their binding interfaces remains a challenge. In this study, we present a geometric transformer that acts directly on atomic...
Autores principales: | Krapp, Lucien F., Abriata, Luciano A., Cortés Rodriguez, Fabio, Dal Peraro, Matteo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113261/ https://www.ncbi.nlm.nih.gov/pubmed/37072397 http://dx.doi.org/10.1038/s41467-023-37701-8 |
Ejemplares similares
-
PESTO: Parameter EStimation TOolbox
por: Stapor, Paul, et al.
Publicado: (2018) -
Assessing the potential of atomistic molecular dynamics simulations to probe reversible protein-protein recognition and binding
por: Abriata, Luciano A., et al.
Publicado: (2015) -
Assessment of transferable forcefields for protein simulations attests improved description of disordered states and secondary structure propensities, and hints at multi-protein systems as the next challenge for optimization
por: Abriata, Luciano A., et al.
Publicado: (2021) -
Investigating Crosstalk Among PTMs Provides Novel Insight Into the Structural Basis Underlying the Differential Effects of Nt17 PTMs on Mutant Httex1 Aggregation
por: Chiki, Anass, et al.
Publicado: (2021) -
Erratum to: Detection and sequence/structure mapping of biophysical constraints to protein variation in saturated mutational libraries and protein sequence alignments with a dedicated server
por: Abriata, Luciano A., et al.
Publicado: (2016)