Cargando…

Gene expression and epigenetic markers of prion diseases

Epigenetics, meaning the variety of mechanisms underpinning gene regulation and chromatin states, plays a key role in normal development as well as in disease initiation and progression. Epigenetic mechanisms like alteration of DNA methylation, histone modifications, and non-coding RNAs, have been p...

Descripción completa

Detalles Bibliográficos
Autores principales: Viré, Emmanuelle A., Mead, Simon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113299/
https://www.ncbi.nlm.nih.gov/pubmed/35307791
http://dx.doi.org/10.1007/s00441-022-03603-2
Descripción
Sumario:Epigenetics, meaning the variety of mechanisms underpinning gene regulation and chromatin states, plays a key role in normal development as well as in disease initiation and progression. Epigenetic mechanisms like alteration of DNA methylation, histone modifications, and non-coding RNAs, have been proposed as biomarkers for diagnosis, classification, or monitoring of responsiveness to treatment in many diseases. In prion diseases, the profound associations with human aging, the effects of cell type and differentiation on in vitro susceptibility, and recently identified human risk factors, all implicate causal epigenetic mechanisms. Here, we review the current state of the art of epigenetics in prion diseases and its interaction with genetic determinants. In particular, we will review recent advances made by several groups in the field profiling DNA methylation and microRNA expression in mammalian prion diseases and the potential for these discoveries to be exploited as biomarkers. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00441-022-03603-2.