Cargando…
A hybrid hierarchical strategy for registration of 7T TOF-MRI to 7T PC-MRI intracranial vessel data
PURPOSE: 7T time-of-flight (TOF) MRI provides high resolution for the evaluation of cerebrovascular vessels and pathologies. In combination with 4D flow fields acquired with phase-contrast (PC) MRI, hemodynamic information can be extracted to enhance the analysis by providing direct measurements in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113302/ https://www.ncbi.nlm.nih.gov/pubmed/36662415 http://dx.doi.org/10.1007/s11548-023-02836-y |
Sumario: | PURPOSE: 7T time-of-flight (TOF) MRI provides high resolution for the evaluation of cerebrovascular vessels and pathologies. In combination with 4D flow fields acquired with phase-contrast (PC) MRI, hemodynamic information can be extracted to enhance the analysis by providing direct measurements in the larger arteries or patient-specific boundary conditions. Hence, a registration between both modalities is required. METHODS: To combine TOF and PC-MRI data, we developed a hybrid registration approach. Vessels and their centerlines are segmented from the TOF data. The centerline is fit to the intensity ridges of the lower resolved PC-MRI data, which provides temporal information. We used a metric that utilizes a scaled sum of weighted intensities and gradients on the normal plane. The registration is then guided by decoupled local affine transformations. It is applied hierarchically following the branching order of the vessel tree. RESULTS: A landmark validation over Monte Carlo simulations yielded an average mean squared error of 184.73 mm and an average Hausdorff distance of 15.20 mm. The hierarchical traversal that transforms child vessels with their parents registers even small vessels not detectable in the PC-MRI. CONCLUSION: The presented work combines high-resolution tomographic information from 7T TOF-MRI and measured flow data from 4D 7T PC-MRI scan for the arteries of the brain. This enables usage of patient-specific flow parameters for realistic simulations, thus supporting research in areas such as cerebral small vessel disease. Automatization and free deformations can help address the limiting error measures in the future. |
---|