Cargando…
Physics-informed deep learning framework to model intense precipitation events at super resolution
Physical modeling of precipitation at fine (sub-kilometer) spatial scales is computationally very expensive. This study develops a highly efficient framework for this task by coupling deep learning (DL) and physical modeling. This framework is developed and tested using regional climate simulations...
Autores principales: | Teufel, B., Carmo, F., Sushama, L., Sun, L., Khaliq, M. N., Bélair, S., Shamseldin, A., Kumar, D. Nagesh, Vaze, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113348/ https://www.ncbi.nlm.nih.gov/pubmed/37092029 http://dx.doi.org/10.1186/s40562-023-00272-z |
Ejemplares similares
-
DL-MRI: A Unified Framework of Deep Learning-Based MRI Super Resolution
por: Liu, Huanyu, et al.
Publicado: (2021) -
Event-Guided Image Super-Resolution Reconstruction
por: Guo, Guangsha, et al.
Publicado: (2023) -
Brightness Invariant Deep Spectral Super-Resolution
por: Stiebel, Tarek, et al.
Publicado: (2020) -
Attention Network with Information Distillation for Super-Resolution
por: Zang, Huaijuan, et al.
Publicado: (2022) -
Super-resolution of magnetic systems using deep learning
por: Lee, D. B., et al.
Publicado: (2023)