Cargando…
Self-Assembled Porous-Reinforcement Microstructure-Based Flexible Triboelectric Patch for Remote Healthcare
Realizing real-time monitoring of physiological signals is vital for preventing and treating chronic diseases in elderly individuals. However, wearable sensors with low power consumption and high sensitivity to both weak physiological signals and large mechanical stimuli remain challenges. Here, a f...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113410/ https://www.ncbi.nlm.nih.gov/pubmed/37071340 http://dx.doi.org/10.1007/s40820-023-01081-x |
Sumario: | Realizing real-time monitoring of physiological signals is vital for preventing and treating chronic diseases in elderly individuals. However, wearable sensors with low power consumption and high sensitivity to both weak physiological signals and large mechanical stimuli remain challenges. Here, a flexible triboelectric patch (FTEP) based on porous-reinforcement microstructures for remote health monitoring has been reported. The porous-reinforcement microstructure is constructed by the self-assembly of silicone rubber adhering to the porous framework of the PU sponge. The mechanical properties of the FTEP can be regulated by the concentrations of silicone rubber dilution. For pressure sensing, its sensitivity can be effectively improved fivefold compared to the device with a solid dielectric layer, reaching 5.93 kPa(−1) under a pressure range of 0–5 kPa. In addition, the FTEP has a wide detection range up to 50 kPa with a sensitivity of 0.21 kPa(−1). The porous microstructure makes the FTEP ultra-sensitive to external pressure, and the reinforcements endow the device with a greater deformation limit in a wide detection range. Finally, a novel concept of the wearable Internet of Healthcare (IoH) system for real-time physiological signal monitoring has been proposed, which could provide real-time physiological information for ambulatory personalized healthcare monitoring. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-023-01081-x. |
---|