Cargando…
Impact of deep learning image reconstruction algorithms on CT radiomic features in patients with liver tumors
OBJECTIVE: To evaluate the impact of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) on abdominal CT radiomic features acquired in portal venous phase in liver tumor patients. METHODS: Sixty patients with liver tumors who underwent contrast-en...
Autores principales: | Xue, Gongbo, Liu, Hongyan, Cai, Xiaoyi, Zhang, Zhen, Zhang, Shuai, Liu, Ling, Hu, Bin, Wang, Guohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113560/ https://www.ncbi.nlm.nih.gov/pubmed/37091167 http://dx.doi.org/10.3389/fonc.2023.1167745 |
Ejemplares similares
-
Comparison of Diagnostic Performance of Spread Through Airspaces of Lung Adenocarcinoma Based on Morphological Analysis and Perinodular and Intranodular Radiomic Features on Chest CT Images
por: Qi, Lin, et al.
Publicado: (2021) -
Deep CNN Model Using CT Radiomics Feature Mapping Recognizes EGFR Gene Mutation Status of Lung Adenocarcinoma
por: Zhang, Baihua, et al.
Publicado: (2021) -
Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules
por: Huang, Wenjun, et al.
Publicado: (2023) -
Stratification of malignant renal neoplasms from cystic renal lesions using deep learning and radiomics features based on a stacking ensemble CT machine learning algorithm
por: He, Quan-Hao, et al.
Publicado: (2022) -
Diagnosis of Serosal Invasion in Gastric Adenocarcinoma by Dual-Energy CT Radiomics: Focusing on Localized Gastric Wall and Peritumoral Radiomics Features
por: Yang, Li, et al.
Publicado: (2022)