Cargando…

Identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma

BACKGROUND: Identifying Kidney Renal Papillary Cell Carcinoma (KIRP) patients with high-risk, guiding individualized diagnosis and treatment of patients, and identifying effective prognostic targets are urgent problems to be solved in current research on KIRP. METHODS: In this study, data of multi o...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Baodong, Li, Mei, Li, Rongshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113630/
https://www.ncbi.nlm.nih.gov/pubmed/37091151
http://dx.doi.org/10.3389/fonc.2023.1169395
_version_ 1785027882084466688
author Wang, Baodong
Li, Mei
Li, Rongshan
author_facet Wang, Baodong
Li, Mei
Li, Rongshan
author_sort Wang, Baodong
collection PubMed
description BACKGROUND: Identifying Kidney Renal Papillary Cell Carcinoma (KIRP) patients with high-risk, guiding individualized diagnosis and treatment of patients, and identifying effective prognostic targets are urgent problems to be solved in current research on KIRP. METHODS: In this study, data of multi omics for patients with KIRP were collected from TCGA database, including mRNAs, lncRNAs, miRNAs, data of methylation, and data of gene mutations. Data of multi-omics related to prognosis of patients with KIRP were selected for each omics level. Further, multi omics data related to prognosis were integrated into cluster analysis based on ten clustering algorithms using MOVICS package. The multi omics-based cancer subtype (MOCS) were compared on biological characteristics, immune microenvironmental cell abundance, immune checkpoint, genomic mutation, drug sensitivity using R packages, including GSVA, clusterProfiler, TIMER, CIBERSORT, CIBERSORT-ABS, quanTIseq, MCPcounter, xCell, EPIC, GISTIC, and pRRophetic algorithms. RESULTS: The top ten OS-related factors for KIRP patients were annotated. Patients with KIRP were divided into MOCS1, MOCS2, and MOCS3. Patients in the MOCS3 subtype were observed with shorter overall survival time than patients in the MOCS1 and MOCS2 subtypes. MOCS1 was negatively correlated with immune-related pathways, and we found global dysfunction of cancer-related pathways among the three MOCS subtypes. We evaluated the activity profiles of regulons among the three MOCSs. Most of the metabolism-related pathways were activated in MOCS2. Several immune microenvironmental cells were highly infiltrated in specific MOCS subtype. MOCS3 showed a significantly lower tumor mutation burden. The CNV occurrence frequency was higher in MOCS1. As for treatment, we found that these MOCSs were sensitive to different drugs and treatments. We also analyzed single-cell data for KIRP. CONCLUSION: Based on a variety of algorithms, this study determined the risk classifier based on multi-omics data, which could guide the risk stratification and medication selection of patients with KIRP.
format Online
Article
Text
id pubmed-10113630
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-101136302023-04-20 Identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma Wang, Baodong Li, Mei Li, Rongshan Front Oncol Oncology BACKGROUND: Identifying Kidney Renal Papillary Cell Carcinoma (KIRP) patients with high-risk, guiding individualized diagnosis and treatment of patients, and identifying effective prognostic targets are urgent problems to be solved in current research on KIRP. METHODS: In this study, data of multi omics for patients with KIRP were collected from TCGA database, including mRNAs, lncRNAs, miRNAs, data of methylation, and data of gene mutations. Data of multi-omics related to prognosis of patients with KIRP were selected for each omics level. Further, multi omics data related to prognosis were integrated into cluster analysis based on ten clustering algorithms using MOVICS package. The multi omics-based cancer subtype (MOCS) were compared on biological characteristics, immune microenvironmental cell abundance, immune checkpoint, genomic mutation, drug sensitivity using R packages, including GSVA, clusterProfiler, TIMER, CIBERSORT, CIBERSORT-ABS, quanTIseq, MCPcounter, xCell, EPIC, GISTIC, and pRRophetic algorithms. RESULTS: The top ten OS-related factors for KIRP patients were annotated. Patients with KIRP were divided into MOCS1, MOCS2, and MOCS3. Patients in the MOCS3 subtype were observed with shorter overall survival time than patients in the MOCS1 and MOCS2 subtypes. MOCS1 was negatively correlated with immune-related pathways, and we found global dysfunction of cancer-related pathways among the three MOCS subtypes. We evaluated the activity profiles of regulons among the three MOCSs. Most of the metabolism-related pathways were activated in MOCS2. Several immune microenvironmental cells were highly infiltrated in specific MOCS subtype. MOCS3 showed a significantly lower tumor mutation burden. The CNV occurrence frequency was higher in MOCS1. As for treatment, we found that these MOCSs were sensitive to different drugs and treatments. We also analyzed single-cell data for KIRP. CONCLUSION: Based on a variety of algorithms, this study determined the risk classifier based on multi-omics data, which could guide the risk stratification and medication selection of patients with KIRP. Frontiers Media S.A. 2023-04-05 /pmc/articles/PMC10113630/ /pubmed/37091151 http://dx.doi.org/10.3389/fonc.2023.1169395 Text en Copyright © 2023 Wang, Li and Li https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Wang, Baodong
Li, Mei
Li, Rongshan
Identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma
title Identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma
title_full Identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma
title_fullStr Identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma
title_full_unstemmed Identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma
title_short Identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma
title_sort identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113630/
https://www.ncbi.nlm.nih.gov/pubmed/37091151
http://dx.doi.org/10.3389/fonc.2023.1169395
work_keys_str_mv AT wangbaodong identificationandverificationofprognosticcancersubtypebasedonmultiomicsanalysisforkidneyrenalpapillarycellcarcinoma
AT limei identificationandverificationofprognosticcancersubtypebasedonmultiomicsanalysisforkidneyrenalpapillarycellcarcinoma
AT lirongshan identificationandverificationofprognosticcancersubtypebasedonmultiomicsanalysisforkidneyrenalpapillarycellcarcinoma