Cargando…
Feasibility study of deep learning‐based markerless real‐time lung tumor tracking with orthogonal X‐ray projection images
PURPOSE: The feasibility of a deep learning‐based markerless real‐time tumor tracking (RTTT) method was retrospectively studied with orthogonal kV X‐ray images and clinical tracking records acquired during lung cancer treatment. METHODS: Ten patients with lung cancer treated with marker‐implanted RT...
Autores principales: | Zhou, Dejun, Nakamura, Mitsuhiro, Mukumoto, Nobutaka, Matsuo, Yukinori, Mizowaki, Takashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113683/ https://www.ncbi.nlm.nih.gov/pubmed/36576920 http://dx.doi.org/10.1002/acm2.13894 |
Ejemplares similares
-
Development of AI-driven prediction models to realize real-time tumor tracking during radiotherapy
por: Zhou, Dejun, et al.
Publicado: (2022) -
Baseline correction of a correlation model for improving the prediction accuracy of infrared marker‐based dynamic tumor tracking
por: Akimoto, Mami, et al.
Publicado: (2015) -
Direct measurement and correction of both megavoltage and kilovoltage scattered x‐rays for orthogonal kilovoltage imaging subsystems with dual flat panel detectors
por: Iramina, Hiraku, et al.
Publicado: (2020) -
Validation of the clinical applicability of knowledge‐based planning models in single‐isocenter volumetric‐modulated arc therapy for multiple brain metastases
por: Kishi, Noriko, et al.
Publicado: (2020) -
Effect of audio instruction on tracking errors using a four‐dimensional image‐guided radiotherapy system
por: Nakamura, Mitsuhiro, et al.
Publicado: (2013)