Cargando…
A partial convolution generative adversarial network for lesion synthesis and enhanced liver tumor segmentation
Lesion segmentation is critical for clinicians to accurately stage the disease and determine treatment strategy. Deep learning based automatic segmentation can improve both the segmentation efficiency and accuracy. However, training a robust deep learning segmentation model requires sufficient train...
Autores principales: | Liu, Yingao, Yang, Fei, Yang, Yidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113707/ https://www.ncbi.nlm.nih.gov/pubmed/36800255 http://dx.doi.org/10.1002/acm2.13927 |
Ejemplares similares
-
Liver tumor segmentation based on 3D convolutional neural network with dual scale
por: Meng, Lu, et al.
Publicado: (2019) -
Attention‐guided duplex adversarial U‐net for pancreatic segmentation from computed tomography images
por: Li, Meiyu, et al.
Publicado: (2022) -
Colonoscopic image synthesis with generative adversarial network for enhanced detection of sessile serrated lesions using convolutional neural network
por: Yoon, Dan, et al.
Publicado: (2022) -
Generative adversarial networks based skin lesion segmentation
por: Innani, Shubham, et al.
Publicado: (2023) -
Automatic localization and segmentation of focal cortical dysplasia in FLAIR‐negative patients using a convolutional neural network
por: Feng, Cuixia, et al.
Publicado: (2020)