Cargando…
Latent generative landscapes as maps of functional diversity in protein sequence space
Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and generate de novo sequences which preserve statistical properties of protein composition. While previous studies focus on clustering and gener...
Autores principales: | Ziegler, Cheyenne, Martin, Jonathan, Sinner, Claude, Morcos, Faruck |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113739/ https://www.ncbi.nlm.nih.gov/pubmed/37076519 http://dx.doi.org/10.1038/s41467-023-37958-z |
Ejemplares similares
-
ELIHKSIR Web Server: Evolutionary Links Inferred for Histidine Kinase Sensors Interacting with Response Regulators
por: Sinner, Claude, et al.
Publicado: (2021) -
Evolutionary entrenchment in immune proteins selects against stabilizing mutations
por: Morcos, Faruck
Publicado: (2022) -
Connecting the Sequence-Space of Bacterial Signaling Proteins to Phenotypes Using Coevolutionary Landscapes
por: Cheng, R. R., et al.
Publicado: (2016) -
Deciphering protein evolution and fitness landscapes with latent space models
por: Ding, Xinqiang, et al.
Publicado: (2019) -
Information Theory in Molecular Evolution: From Models to Structures and Dynamics
por: Morcos, Faruck
Publicado: (2021)