Cargando…
Cryo-EM of the injectisome and type III secretion systems
Double-membrane-spanning protein complexes, such as the T3SS, had long presented an intractable challenge for structural biology. As a consequence, until a few years ago, our molecular understanding of this fascinating complex was limited to composite models, consisting of structures of isolated dom...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114087/ https://www.ncbi.nlm.nih.gov/pubmed/35724552 http://dx.doi.org/10.1016/j.sbi.2022.102403 |
Sumario: | Double-membrane-spanning protein complexes, such as the T3SS, had long presented an intractable challenge for structural biology. As a consequence, until a few years ago, our molecular understanding of this fascinating complex was limited to composite models, consisting of structures of isolated domains, positioned within the overall complex. Most of the membrane-embedded components remained completely uncharacterized. In recent years, the emergence of cryo-electron microscopy (cryo-EM) as a method for determining protein structures to high resolution, has be transformative to our capacity to understand the architecture of this complex, and its mechanism of substrate transport. In this review, we summarize the recent structures of the various T3SS components, determined by cryo-EM, and highlight the regions of the complex that remain to be characterized. We also discuss the recent structural insights into the mechanism of effector transport through the T3SS. Finally, we highlight some of the challenges that remain to be tackled. |
---|