Cargando…
Transfer of nuclear and ribosomal material from Sox10-lineage cells to neurons in the mouse brain
Material transfer is an essential form of intercellular communication to exchange information and resources between cells. Material transfer between neurons and from glia to neurons has been demonstrated to support neuronal survival and activity. Understanding the extent of material transfer in the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114922/ https://www.ncbi.nlm.nih.gov/pubmed/37067791 http://dx.doi.org/10.1084/jem.20221632 |
_version_ | 1785028109350731776 |
---|---|
author | Mayrhofer, Florian Hanson, Angela M. Navedo, Manuel F. Xiang, Yang K. Soulika, Athena M. Deng, Wenbin Chechneva, Olga V. |
author_facet | Mayrhofer, Florian Hanson, Angela M. Navedo, Manuel F. Xiang, Yang K. Soulika, Athena M. Deng, Wenbin Chechneva, Olga V. |
author_sort | Mayrhofer, Florian |
collection | PubMed |
description | Material transfer is an essential form of intercellular communication to exchange information and resources between cells. Material transfer between neurons and from glia to neurons has been demonstrated to support neuronal survival and activity. Understanding the extent of material transfer in the healthy nervous system is limited. Here we report that in the mouse central nervous system (CNS), neurons receive nuclear and ribosomal material of Sox10-lineage cell (SOL) origin. We show that transfer of SOL-derived material to neurons is region dependent, establishes during postnatal brain maturation, and dynamically responds to LPS-induced neuroinflammation in the adult mouse brain. We identified satellite oligodendrocyte–neuron pairs with loss of plasma membrane integrity between nuclei, suggesting direct material transfer. Together, our findings provide evidence of regionally coordinated transfer of SOL-derived nuclear and ribosomal material to neurons in the mouse CNS, with potential implications for the understanding and modulation of neuronal function and treatment of neurological disorders. |
format | Online Article Text |
id | pubmed-10114922 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101149222023-10-17 Transfer of nuclear and ribosomal material from Sox10-lineage cells to neurons in the mouse brain Mayrhofer, Florian Hanson, Angela M. Navedo, Manuel F. Xiang, Yang K. Soulika, Athena M. Deng, Wenbin Chechneva, Olga V. J Exp Med Brief Definitive Report Material transfer is an essential form of intercellular communication to exchange information and resources between cells. Material transfer between neurons and from glia to neurons has been demonstrated to support neuronal survival and activity. Understanding the extent of material transfer in the healthy nervous system is limited. Here we report that in the mouse central nervous system (CNS), neurons receive nuclear and ribosomal material of Sox10-lineage cell (SOL) origin. We show that transfer of SOL-derived material to neurons is region dependent, establishes during postnatal brain maturation, and dynamically responds to LPS-induced neuroinflammation in the adult mouse brain. We identified satellite oligodendrocyte–neuron pairs with loss of plasma membrane integrity between nuclei, suggesting direct material transfer. Together, our findings provide evidence of regionally coordinated transfer of SOL-derived nuclear and ribosomal material to neurons in the mouse CNS, with potential implications for the understanding and modulation of neuronal function and treatment of neurological disorders. Rockefeller University Press 2023-04-17 /pmc/articles/PMC10114922/ /pubmed/37067791 http://dx.doi.org/10.1084/jem.20221632 Text en © 2023 Mayrhofer et al. https://creativecommons.org/licenses/by-nc-sa/4.0/http://www.rupress.org/terms/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Brief Definitive Report Mayrhofer, Florian Hanson, Angela M. Navedo, Manuel F. Xiang, Yang K. Soulika, Athena M. Deng, Wenbin Chechneva, Olga V. Transfer of nuclear and ribosomal material from Sox10-lineage cells to neurons in the mouse brain |
title | Transfer of nuclear and ribosomal material from Sox10-lineage cells to neurons in the mouse brain |
title_full | Transfer of nuclear and ribosomal material from Sox10-lineage cells to neurons in the mouse brain |
title_fullStr | Transfer of nuclear and ribosomal material from Sox10-lineage cells to neurons in the mouse brain |
title_full_unstemmed | Transfer of nuclear and ribosomal material from Sox10-lineage cells to neurons in the mouse brain |
title_short | Transfer of nuclear and ribosomal material from Sox10-lineage cells to neurons in the mouse brain |
title_sort | transfer of nuclear and ribosomal material from sox10-lineage cells to neurons in the mouse brain |
topic | Brief Definitive Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114922/ https://www.ncbi.nlm.nih.gov/pubmed/37067791 http://dx.doi.org/10.1084/jem.20221632 |
work_keys_str_mv | AT mayrhoferflorian transferofnuclearandribosomalmaterialfromsox10lineagecellstoneuronsinthemousebrain AT hansonangelam transferofnuclearandribosomalmaterialfromsox10lineagecellstoneuronsinthemousebrain AT navedomanuelf transferofnuclearandribosomalmaterialfromsox10lineagecellstoneuronsinthemousebrain AT xiangyangk transferofnuclearandribosomalmaterialfromsox10lineagecellstoneuronsinthemousebrain AT soulikaathenam transferofnuclearandribosomalmaterialfromsox10lineagecellstoneuronsinthemousebrain AT dengwenbin transferofnuclearandribosomalmaterialfromsox10lineagecellstoneuronsinthemousebrain AT chechnevaolgav transferofnuclearandribosomalmaterialfromsox10lineagecellstoneuronsinthemousebrain |