Cargando…

Plasma degradation of contaminated PPE: an energy-efficient method to treat contaminated plastic waste

The use of PPE has drastically increased because of the SARS-CoV-2 (COVID-19) pandemic as disposable surgical face masks made from non-biodegradable polypropylene (PP) polymers have generated a significant amount of waste. In this work, a low-power plasma method has been used to degrade surgical mas...

Descripción completa

Detalles Bibliográficos
Autores principales: Marco Tobías, Mariano, Åhlén, Michelle, Cheung, Ocean, Bucknall, David G., McCoustra, Martin R. S., Yiu, Humphrey H. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115383/
https://www.ncbi.nlm.nih.gov/pubmed/37096160
http://dx.doi.org/10.1038/s41529-023-00350-9
Descripción
Sumario:The use of PPE has drastically increased because of the SARS-CoV-2 (COVID-19) pandemic as disposable surgical face masks made from non-biodegradable polypropylene (PP) polymers have generated a significant amount of waste. In this work, a low-power plasma method has been used to degrade surgical masks. Several analytical techniques (gravimetric analysis, scanning electron microscopy (SEM), attenuated total reflection-infra-red spectroscopy (ATR-IR), x-ray photoelectron spectroscopy (XPS), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and wide-angle x-ray scattering (WAXS)) were used to evaluate the effects of plasma irradiation on mask samples. After 4 h of irradiation, an overall mass loss of 63 ± 8%, through oxidation followed by fragmentation, was observed on the non-woven 3-ply surgical mask, which is 20 times faster than degrading a bulk PP sample. Individual components of the mask also showed different degradation rates. Air plasma clearly represents an energy-efficient tool for treating contaminated PPE in an environmentally friendly approach.