Cargando…
COVID-SegNet: encoder–decoder-based architecture for COVID-19 lesion segmentation in chest X-ray
The coronavirus disease 2019, initially named 2019-nCOV (COVID-19) has been declared a global pandemic by the World Health Organization in March 2020. Because of the growing number of COVID patients, the world’s health infrastructure has collapsed, and computer-aided diagnosis has become a necessity...
Autores principales: | Agrawal, Tarun, Choudhary, Prakash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115388/ https://www.ncbi.nlm.nih.gov/pubmed/37360154 http://dx.doi.org/10.1007/s00530-023-01096-9 |
Ejemplares similares
-
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
Retracted: Retinal Vessel Automatic Segmentation Using SegNet
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
Liver Tumor Segmentation in CT Scans Using Modified SegNet
por: Almotairi, Sultan, et al.
Publicado: (2020) -
Intelligent yield estimation for tomato crop using SegNet with VGG19 architecture
por: Maheswari, Prabhakar, et al.
Publicado: (2022)