Cargando…
Deterministic small‐scale undulations of image‐based risk predictions from the deep learning of lung tumors in motion
INTRODUCTION: Deep learning (DL) models that use medical images to predict clinical outcomes are poised for clinical translation. For tumors that reside in organs that move, however, the impact of motion (i.e., degenerated object appearance or blur) on DL model accuracy remains unclear. We examine t...
Autores principales: | Teo, P. Troy, Bajaj, Amishi, Randall, James, Lou, Bin, Shah, Jainil, Gopalakrishnan, Mahesh, Kamen, Ali, Abazeed, Mohamed E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115400/ https://www.ncbi.nlm.nih.gov/pubmed/35962958 http://dx.doi.org/10.1002/mp.15869 |
Ejemplares similares
-
Image-Based Deep Neural Network for Individualizing Radiotherapy Dose Is Transportable Across Health Systems
por: Randall, James, et al.
Publicado: (2023) -
MPEXS‐DNA, a new GPU‐based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale
por: Okada, Shogo, et al.
Publicado: (2019) -
Tumor radio-sensitivity assessment by means of volume data and magnetic
resonance indices measured on prostate tumor bearing rats
por: Belfatto, Antonella, et al.
Publicado: (2016) -
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers
por: Deist, Timo M., et al.
Publicado: (2018) -
Quantification of DNA double‐strand breaks using Geant4‐DNA
por: Chatzipapas, Konstantinos P., et al.
Publicado: (2018)