Cargando…
Unveiling the secret of ancient Maya masons: Biomimetic lime plasters with plant extracts
Ancient Maya produced some of the most durable lime plasters on Earth, yet how this was achieved remains a secret. Here, we show that ancient Maya plasters from Copan (Honduras) include organics and have a calcite cement with meso-to-nanostructural features matching those of calcite biominerals (e.g...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115411/ https://www.ncbi.nlm.nih.gov/pubmed/37075113 http://dx.doi.org/10.1126/sciadv.adf6138 |
Sumario: | Ancient Maya produced some of the most durable lime plasters on Earth, yet how this was achieved remains a secret. Here, we show that ancient Maya plasters from Copan (Honduras) include organics and have a calcite cement with meso-to-nanostructural features matching those of calcite biominerals (e.g., shells). To test the hypothesis that the organics could play a similar toughening role as (bio)macromolecules in calcium carbonate biominerals, we prepared plaster replicas adding polysaccharide-rich bark extracts from Copan’s local trees following an ancient Maya building tradition. We show that the replicas display similar features as the organics-containing ancient Maya plasters and demonstrate that, as in biominerals, in both cases, their calcite cement includes inter- and intracrystalline organics that impart a marked plastic behavior and enhanced toughness while increasing weathering resistance. Apparently, the lime technology developed by ancient Maya, and likely other ancient civilizations that used natural organic additives to prepare lime plasters, fortuitously exploited a biomimetic route for improving carbonate binders performance. |
---|