Cargando…
Metabolite Comparison between Spleen-Deficiency and Healthy Children
OBJECTIVE: From the perspective of metabolomics, this study compares the metabolomics characteristics of feces and urine between children with spleen-deficiency and healthy children to explain the scientific connotation of children with spleen-deficiency susceptibility to digestive system diseases f...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115538/ https://www.ncbi.nlm.nih.gov/pubmed/37089718 http://dx.doi.org/10.1155/2023/5937308 |
Sumario: | OBJECTIVE: From the perspective of metabolomics, this study compares the metabolomics characteristics of feces and urine between children with spleen-deficiency and healthy children to explain the scientific connotation of children with spleen-deficiency susceptibility to digestive system diseases from the metabolic level and provide a scientific basis for further research. METHODS: This study included 20 children with spleen-deficiencies and 17 healthy children. Children's symptom scores, height, and weight were recorded in groups, and feces and urine samples were collected. The samples were detected using ultrahigh-performance liquid chromatography-mass spectrometry. The data were analyzed using multivariate statistical analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Related differential metabolites were identified through database comparisons between two groups based on the MS and KEGG. RESULTS: Compared to healthy children, the metabolites glucuronic acid, xanthine, and indole-3-acetaldehyde tend to be reduced in children with spleen-deficiency. Moreover, these children showed an increase in metabolites such as quinic acid, adenine, 4-methyl-5-thiazole-ethanol, 3-formyl indole, and 5-hydroxy indole-3-acetic acid. The condition affected many of the critical metabolic pathways, including the metabolism of tryptophan, cysteine, methionine, and pentose phosphate. CONCLUSION: The children with spleen-deficiency had disorders at the metabolic level, which might be due to factors such as diet, personal preferences, and genes, leading to various symptoms, making spleen-deficiency children more prone to suffer from digestive diseases than healthy children. The results set a basis for the research on children's TCM constitution, which can be a reference to further studies to deal with the spleen-deficiency. |
---|