Cargando…
High-throughput image analysis with deep learning captures heterogeneity and spatial relationships after kidney injury
Recovery from acute kidney injury can vary widely in patients and in animal models. Immunofluorescence staining can provide spatial information about heterogeneous injury responses, but often only a fraction of stained tissue is analyzed. Deep learning can expand analysis to larger areas and sample...
Autores principales: | McElliott, Madison C., Al-Suraimi, Anas, Telang, Asha C., Ference-Salo, Jenna T., Chowdhury, Mahboob, Soofi, Abdul, Dressler, Gregory R., Beamish, Jeffrey A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115810/ https://www.ncbi.nlm.nih.gov/pubmed/37076596 http://dx.doi.org/10.1038/s41598-023-33433-3 |
Ejemplares similares
-
Spatial kernel models capturing field heterogeneity for accurate estimation of genetic potential
por: Ishimori, Motoyuki, et al.
Publicado: (2021) -
Rapid sperm capture: high-throughput flagellar waveform analysis
por: Gallagher, M T, et al.
Publicado: (2019) -
Explaining detection heterogeneity with finite mixture and non-Euclidean movement in spatially explicit capture-recapture models
por: Marrotte, Robby R., et al.
Publicado: (2022) -
Sampling to capture single-cell heterogeneity
por: Rajaram, Satwik, et al.
Publicado: (2017) -
High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture
por: Inagaki, Soichi, et al.
Publicado: (2015)