Cargando…
Prenatal Exposure to Air Pollution and Pre-Labor Rupture of Membranes in a Prospective Cohort Study: The Role of Maternal Hemoglobin and Iron Supplementation
BACKGROUND: Exposure to air pollution in prenatal period is associated with prelabor rupture of membranes (PROM). However, the sensitive exposure time windows and the possible biological mechanisms underlying this association remain unclear. OBJECTIVE: We aimed to identify the sensitive time windows...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Environmental Health Perspectives
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116877/ https://www.ncbi.nlm.nih.gov/pubmed/37074185 http://dx.doi.org/10.1289/EHP11134 |
_version_ | 1785028515516645376 |
---|---|
author | Wu, Lin Yin, Wan-jun Yu, Li-jun Wang, Yu-hong Jiang, Xiao-min Zhang, Ying Tao, Fang-biao Tao, Rui-xue Zhu, Peng |
author_facet | Wu, Lin Yin, Wan-jun Yu, Li-jun Wang, Yu-hong Jiang, Xiao-min Zhang, Ying Tao, Fang-biao Tao, Rui-xue Zhu, Peng |
author_sort | Wu, Lin |
collection | PubMed |
description | BACKGROUND: Exposure to air pollution in prenatal period is associated with prelabor rupture of membranes (PROM). However, the sensitive exposure time windows and the possible biological mechanisms underlying this association remain unclear. OBJECTIVE: We aimed to identify the sensitive time windows of exposure to air pollution for PROM risk. Further, we examined whether maternal hemoglobin levels mediate the association between exposure to air pollution and PROM, as well as investigated the potential effect of iron supplementation on this association. METHOD: From 2015 to 2021, 6,824 mother–newborn pairs were enrolled in the study from three hospitals in Hefei, China. We obtained air pollutant data [particulate matter (PM) with aerodynamic diameter [Formula: see text] ([Formula: see text]), PM with aerodynamic diameter [Formula: see text] ([Formula: see text]), sulfur dioxide ([Formula: see text]), and carbon monoxide (CO)] from the Hefei City Ecology and Environment Bureau. Information on maternal hemoglobin levels, gestational anemia, iron supplementation, and PROM was obtained from medical records. Logistic regression models with distributed lags were used to identify the sensitive time window for the effect of prenatal exposure to air pollutant on PROM. Mediation analysis estimated the mediated effect of maternal hemoglobin in the third trimester, linking prenatal air pollution with PROM. Stratified analysis was used to investigate the potential effect of iron supplementation on PROM risk. RESULTS: We found significant association between prenatal exposure to air pollution and increased PROM risk after adjusting for confounders, and the critical exposure windows of [Formula: see text] , [Formula: see text] , [Formula: see text] and CO were the 21th to 24th weeks of pregnancy. Every [Formula: see text] increase in [Formula: see text] and [Formula: see text] , [Formula: see text] increase in [Formula: see text] , and [Formula: see text] increase in CO was associated with low maternal hemoglobin levels [[Formula: see text] (95% confidence interval (CI): [Formula: see text] , [Formula: see text]), [Formula: see text] (95% CI: [Formula: see text] , [Formula: see text]), [Formula: see text] (95% CI: [Formula: see text] , [Formula: see text]), and [Formula: see text] (95% CI: [Formula: see text] , [Formula: see text]), respectively] in the third trimester. The proportion of the association between air pollution and PROM risk mediated by hemoglobin levels was 20.61% [average mediation effect (95% CI): 0.02 (0.01, 0.05); average direct effect (95%): 0.08 (0.02, 0.14)]. The PROM risk associated with exposure to low-medium air pollution could be attenuated by maternal iron supplementation in women with gestational anemia. CONCLUSIONS: Prenatal exposure to air pollution, especially in the 21st to 24th weeks of pregnancy, is associated with PROM risk, which is partly mediated by maternal hemoglobin levels. Iron supplementation in anemia pregnancies may have protective effects against PROM risk associated with exposure to low–medium air pollution. https://doi.org/10.1289/EHP11134 |
format | Online Article Text |
id | pubmed-10116877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Environmental Health Perspectives |
record_format | MEDLINE/PubMed |
spelling | pubmed-101168772023-04-21 Prenatal Exposure to Air Pollution and Pre-Labor Rupture of Membranes in a Prospective Cohort Study: The Role of Maternal Hemoglobin and Iron Supplementation Wu, Lin Yin, Wan-jun Yu, Li-jun Wang, Yu-hong Jiang, Xiao-min Zhang, Ying Tao, Fang-biao Tao, Rui-xue Zhu, Peng Environ Health Perspect Research BACKGROUND: Exposure to air pollution in prenatal period is associated with prelabor rupture of membranes (PROM). However, the sensitive exposure time windows and the possible biological mechanisms underlying this association remain unclear. OBJECTIVE: We aimed to identify the sensitive time windows of exposure to air pollution for PROM risk. Further, we examined whether maternal hemoglobin levels mediate the association between exposure to air pollution and PROM, as well as investigated the potential effect of iron supplementation on this association. METHOD: From 2015 to 2021, 6,824 mother–newborn pairs were enrolled in the study from three hospitals in Hefei, China. We obtained air pollutant data [particulate matter (PM) with aerodynamic diameter [Formula: see text] ([Formula: see text]), PM with aerodynamic diameter [Formula: see text] ([Formula: see text]), sulfur dioxide ([Formula: see text]), and carbon monoxide (CO)] from the Hefei City Ecology and Environment Bureau. Information on maternal hemoglobin levels, gestational anemia, iron supplementation, and PROM was obtained from medical records. Logistic regression models with distributed lags were used to identify the sensitive time window for the effect of prenatal exposure to air pollutant on PROM. Mediation analysis estimated the mediated effect of maternal hemoglobin in the third trimester, linking prenatal air pollution with PROM. Stratified analysis was used to investigate the potential effect of iron supplementation on PROM risk. RESULTS: We found significant association between prenatal exposure to air pollution and increased PROM risk after adjusting for confounders, and the critical exposure windows of [Formula: see text] , [Formula: see text] , [Formula: see text] and CO were the 21th to 24th weeks of pregnancy. Every [Formula: see text] increase in [Formula: see text] and [Formula: see text] , [Formula: see text] increase in [Formula: see text] , and [Formula: see text] increase in CO was associated with low maternal hemoglobin levels [[Formula: see text] (95% confidence interval (CI): [Formula: see text] , [Formula: see text]), [Formula: see text] (95% CI: [Formula: see text] , [Formula: see text]), [Formula: see text] (95% CI: [Formula: see text] , [Formula: see text]), and [Formula: see text] (95% CI: [Formula: see text] , [Formula: see text]), respectively] in the third trimester. The proportion of the association between air pollution and PROM risk mediated by hemoglobin levels was 20.61% [average mediation effect (95% CI): 0.02 (0.01, 0.05); average direct effect (95%): 0.08 (0.02, 0.14)]. The PROM risk associated with exposure to low-medium air pollution could be attenuated by maternal iron supplementation in women with gestational anemia. CONCLUSIONS: Prenatal exposure to air pollution, especially in the 21st to 24th weeks of pregnancy, is associated with PROM risk, which is partly mediated by maternal hemoglobin levels. Iron supplementation in anemia pregnancies may have protective effects against PROM risk associated with exposure to low–medium air pollution. https://doi.org/10.1289/EHP11134 Environmental Health Perspectives 2023-04-19 /pmc/articles/PMC10116877/ /pubmed/37074185 http://dx.doi.org/10.1289/EHP11134 Text en https://ehp.niehs.nih.gov/about-ehp/licenseEHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted. |
spellingShingle | Research Wu, Lin Yin, Wan-jun Yu, Li-jun Wang, Yu-hong Jiang, Xiao-min Zhang, Ying Tao, Fang-biao Tao, Rui-xue Zhu, Peng Prenatal Exposure to Air Pollution and Pre-Labor Rupture of Membranes in a Prospective Cohort Study: The Role of Maternal Hemoglobin and Iron Supplementation |
title | Prenatal Exposure to Air Pollution and Pre-Labor Rupture of Membranes in a Prospective Cohort Study: The Role of Maternal Hemoglobin and Iron Supplementation |
title_full | Prenatal Exposure to Air Pollution and Pre-Labor Rupture of Membranes in a Prospective Cohort Study: The Role of Maternal Hemoglobin and Iron Supplementation |
title_fullStr | Prenatal Exposure to Air Pollution and Pre-Labor Rupture of Membranes in a Prospective Cohort Study: The Role of Maternal Hemoglobin and Iron Supplementation |
title_full_unstemmed | Prenatal Exposure to Air Pollution and Pre-Labor Rupture of Membranes in a Prospective Cohort Study: The Role of Maternal Hemoglobin and Iron Supplementation |
title_short | Prenatal Exposure to Air Pollution and Pre-Labor Rupture of Membranes in a Prospective Cohort Study: The Role of Maternal Hemoglobin and Iron Supplementation |
title_sort | prenatal exposure to air pollution and pre-labor rupture of membranes in a prospective cohort study: the role of maternal hemoglobin and iron supplementation |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116877/ https://www.ncbi.nlm.nih.gov/pubmed/37074185 http://dx.doi.org/10.1289/EHP11134 |
work_keys_str_mv | AT wulin prenatalexposuretoairpollutionandprelaborruptureofmembranesinaprospectivecohortstudytheroleofmaternalhemoglobinandironsupplementation AT yinwanjun prenatalexposuretoairpollutionandprelaborruptureofmembranesinaprospectivecohortstudytheroleofmaternalhemoglobinandironsupplementation AT yulijun prenatalexposuretoairpollutionandprelaborruptureofmembranesinaprospectivecohortstudytheroleofmaternalhemoglobinandironsupplementation AT wangyuhong prenatalexposuretoairpollutionandprelaborruptureofmembranesinaprospectivecohortstudytheroleofmaternalhemoglobinandironsupplementation AT jiangxiaomin prenatalexposuretoairpollutionandprelaborruptureofmembranesinaprospectivecohortstudytheroleofmaternalhemoglobinandironsupplementation AT zhangying prenatalexposuretoairpollutionandprelaborruptureofmembranesinaprospectivecohortstudytheroleofmaternalhemoglobinandironsupplementation AT taofangbiao prenatalexposuretoairpollutionandprelaborruptureofmembranesinaprospectivecohortstudytheroleofmaternalhemoglobinandironsupplementation AT taoruixue prenatalexposuretoairpollutionandprelaborruptureofmembranesinaprospectivecohortstudytheroleofmaternalhemoglobinandironsupplementation AT zhupeng prenatalexposuretoairpollutionandprelaborruptureofmembranesinaprospectivecohortstudytheroleofmaternalhemoglobinandironsupplementation |