Cargando…
Deep Learning for Diagnosing and Segmenting Choroidal Neovascularization in OCT Angiography in a Large Real-World Data Set
PURPOSE: To diagnose and segment choroidal neovascularization (CNV) in a real-world multicenter clinical OCT angiography (OCTA) data set using deep learning. METHODS: A total of 105,66 OCTA scans from 3135 eyes, including 4701 with CNV and 5865 without, were collected in five eye clinics. Both 3 × 3...
Autores principales: | Wang, Jie, Hormel, Tristan T., Tsuboi, Kotaro, Wang, Xiaogang, Ding, Xiaoyan, Peng, Xiaoyan, Huang, David, Bailey, Steven T., Jia, Yali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117225/ https://www.ncbi.nlm.nih.gov/pubmed/37058103 http://dx.doi.org/10.1167/tvst.12.4.15 |
Ejemplares similares
-
A Diabetic Retinopathy Classification Framework Based on Deep-Learning Analysis of OCT Angiography
por: Zang, Pengxiao, et al.
Publicado: (2022) -
Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data With Deep Learning
por: Valmaggia, Philippe, et al.
Publicado: (2022) -
Deep-Learning–Aided Diagnosis of Diabetic Retinopathy, Age-Related Macular Degeneration, and Glaucoma Based on Structural and Angiographic OCT
por: Zang, Pengxiao, et al.
Publicado: (2022) -
Convolutional Neural Network–Based Automated Quality Assessment of OCT and OCT Angiography Image Maps in Individuals With Neurodegenerative Disease
por: Lee, Terry, et al.
Publicado: (2023) -
Segmentation-Free OCT-Volume-Based Deep Learning Model Improves Pointwise Visual Field Sensitivity Estimation
por: Chen, Zhiqi, et al.
Publicado: (2023)