Cargando…
Springer: An R package for bi-level variable selection of high-dimensional longitudinal data
In high-dimensional data analysis, the bi-level (or the sparse group) variable selection can simultaneously conduct penalization on the group level and within groups, which has been developed for continuous, binary, and survival responses in the literature. Zhou et al. (2022) (PMID: 35766061) has fu...
Autores principales: | Zhou, Fei, Liu, Yuwen, Ren, Jie, Wang, Weiqun, Wu, Cen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117642/ https://www.ncbi.nlm.nih.gov/pubmed/37091810 http://dx.doi.org/10.3389/fgene.2023.1088223 |
Ejemplares similares
-
Interep: An R Package for High-Dimensional Interaction Analysis of the Repeated Measurement Data
por: Zhou, Fei, et al.
Publicado: (2022) -
Penalized Variable Selection for Lipid–Environment Interactions in a Longitudinal Lipidomics Study
por: Zhou, Fei, et al.
Publicado: (2019) -
Identifying Gene–Environment Interactions With Robust Marginal Bayesian Variable Selection
por: Lu, Xi, et al.
Publicado: (2021) -
lme4GS: An R-Package for Genomic Selection
por: Caamal-Pat, Diana, et al.
Publicado: (2021) -
TrainSel: An R Package for Selection of Training Populations
por: Akdemir, Deniz, et al.
Publicado: (2021)