Cargando…
The art and science of using quality control to understand and improve fMRI data
Designing and executing a good quality control (QC) process is vital to robust and reproducible science and is often taught through hands on training. As FMRI research trends toward studies with larger sample sizes and highly automated processing pipelines, the people who analyze data are often dist...
Autores principales: | Teves, Joshua B., Gonzalez-Castillo, Javier, Holness, Micah, Spurney, Megan, Bandettini, Peter A., Handwerker, Daniel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117661/ https://www.ncbi.nlm.nih.gov/pubmed/37090794 http://dx.doi.org/10.3389/fnins.2023.1100544 |
Ejemplares similares
-
Manifold learning for fMRI time-varying functional connectivity
por: Gonzalez-Castillo, Javier, et al.
Publicado: (2023) -
Introducing Alternative-Based Thresholding for Defining Functional Regions of Interest in fMRI
por: Degryse, Jasper, et al.
Publicado: (2017) -
Theta-burst TMS to the posterior superior temporal sulcus decreases resting-state fMRI connectivity across the face processing network
por: Handwerker, Daniel A., et al.
Publicado: (2020) -
DC Shifts-fMRI: A Supplement to Event-Related fMRI
por: Li, Qiang, et al.
Publicado: (2019) -
Facilitating open-science with realistic fMRI simulation: validation and application
por: Ellis, Cameron T., et al.
Publicado: (2020)