Cargando…

Isolation and characterization of bacteriophages from the human skin microbiome that infect Staphylococcus epidermidis

Phage therapy might be a useful approach for the treatment of nosocomial infections; however, only few lytic phages suitable for this application are available for the opportunistic pathogen, Staphylococcus epidermidis. In the current study, we developed an efficient method to isolate bacteriophages...

Descripción completa

Detalles Bibliográficos
Autores principales: Valente, Luca G, Pitton, Melissa, Fürholz, Monika, Oberhaensli, Simone, Bruggmann, Rémy, Leib, Stephen L, Jakob, Stephan M, Resch, Grégory, Que, Yok-Ai, Cameron, David R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117716/
https://www.ncbi.nlm.nih.gov/pubmed/37334235
http://dx.doi.org/10.1093/femsmc/xtab003
Descripción
Sumario:Phage therapy might be a useful approach for the treatment of nosocomial infections; however, only few lytic phages suitable for this application are available for the opportunistic pathogen, Staphylococcus epidermidis. In the current study, we developed an efficient method to isolate bacteriophages present within the human skin microbiome, by using niche-specific S. epidermidis as the host for phage propagation. Staphylococcus epidermidis was identified on the forehead of 92% of human subjects tested. These isolates were then used to propagate phages present in the same skin sample. Plaques were observable on bacterial lawns in 46% of the cases where S. epidermidis was isolated. A total of eight phage genomes were genetically characterized, including the previously described phage 456. A total of six phage sequences were unique, and spanned each of the major staphylococcal phage families; Siphoviridae (n = 3), Podoviridae (n = 1) and Myoviridae (n = 2). One of the myoviruses (vB_SepM_BE06) was identified on the skin of three different humans. Comparative analysis identified novel genes including a putative N-acetylmuramoyl-L-alanine amidase gene. The host-range of each unique phage was characterized using a panel of diverse staphylococcal strains (n = 78). None of the newly isolated phages infected more than 52% of the S. epidermidis strains tested (n = 44), and non-S. epidermidis strains where rarely infected, highlighting the narrow host-range of the phages. One of the phages (vB_SepM_BE04) was capable of killing staphylococcal cells within biofilms formed on polyurethane catheters. Uncovering a richer diversity of available phages will likely improve our understanding of S. epidermidis-phage interactions, which will be important for future therapy.