Cargando…
Antidiabetic activity of Berberis brandisiana is possibly mediated through modulation of insulin signaling pathway, inflammatory cytokines and adipocytokines in high fat diet and streptozotocin-administered rats
Medicinal plants play a key role in protection of chronic non-communicable ailments like diabetes, hypertension and dyslipidemia. Berberis brandisiana Ahrendt (Berberidaceae) is traditionally used to treat diabetes, liver problems, wounds, arthritis, infections, swelling and tumors. It is also known...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117783/ https://www.ncbi.nlm.nih.gov/pubmed/37089941 http://dx.doi.org/10.3389/fphar.2023.1085013 |
_version_ | 1785028664754176000 |
---|---|
author | Mehdi, Shumaila Mehmood, Malik Hassan Ahmed, Mobeen Ghulam Ashfaq, Usman Ali |
author_facet | Mehdi, Shumaila Mehmood, Malik Hassan Ahmed, Mobeen Ghulam Ashfaq, Usman Ali |
author_sort | Mehdi, Shumaila |
collection | PubMed |
description | Medicinal plants play a key role in protection of chronic non-communicable ailments like diabetes, hypertension and dyslipidemia. Berberis brandisiana Ahrendt (Berberidaceae) is traditionally used to treat diabetes, liver problems, wounds, arthritis, infections, swelling and tumors. It is also known to be enriched with multiple phytoconstituents including berbamine, berberine, quercetin, gallic acid, caffeic acid, vanillic acid, benzoic acid, chlorogenic acid, syringic acid, p-coumaric acid, m-coumaric acid and ferulic acid. The efficacy of B. brandisiana has not been established yet in diabetes. This study has been planned to assess the antidiabetic activity of B. brandisiana in high fat diet and streptozotocin (HFD/STZ)-induced diabetes using animals. Administration of aqueous methanolic extract of B. brandisiana (AMEBB) and berbamine (Berb) for 8 weeks caused a dose dependent marked (p < 0.01) rise in serum insulin and HDL levels with a significant decline (p < 0.01) in glucose, triglycerides, glycosylated hemoglobin (HbA1c), cholesterol, LDL, LFTs and RFTs levels when compared with only HFD/STZ-administered rats. AMEBB and Berb also modulated inflammatory biomarkers (TNF-α, IL-6) and adipocytokines (leptin, adiponectin and chemerin). AMEBB (150 mg/kg and 300 mg/kg) and Berb (80 mg/kg and 160 mg/kg) treated rats showed a marked increase (p < 0.001) in catalase levels (Units/mg) in pancreas (42.4 ± 0.24, 47.4 ± 0.51), (38.2 ± 0.583, 48.6 ± 1.03) and liver (52 ± 1.41, 63.2 ± 0.51), (57.2 ± 0.58, 61.6 ± 1.24) and superoxide dismutase levels (Units/mg) in pancreas (34.8 ± 1.46, 38.2 ± 0.58), (33.2 ± 0.80, 40.4 ± 1.96) and liver (31.8 ± 1.52, 36.8 ± 0.96), (30 ± 0.70, 38.4 ± 0.81),respectively while a significant (p < 0.01) decrease in serum melondialdehyde levels (nmol/g) in pancreas (7.34 ± 0.17, 6.22 ± 0.22), (7.34 ± 0.20, 6.34 ± 0.11) and liver (9.08 ± 0.31,8.18 ± 0.29), (9.34 ± 0.10, 8.86 ± 0.24) compared to the data of only HFD/STZ-fed rats. Histopathological studies of pancreas, liver, kidney, heart and aorta revealed restoration of normal tissue architect in AMEBB and Berb treated rats. When mRNA expressions of candidate genes were assessed, AMEBB and Berb showed upregulation of IRS-1, SIRT1, GLUT-4 and downregulation of ADAM17. These findings suggest that AMEBB and Berb possess antidiabetic activity, possibly due to its effect on oxidative stress, glucose metabolism, inflammatory biomarkers and adipocytokines levels. Further upregulation of IRS-1, SIRT1, GLUT-4 and downregulation of ADAM17, demonstrated its potential impact on glucose homeostasis, insulin resistance and chronic inflammatory markers. Thus, this study provides support to the medicinal use of B. brandisiana and berbamine in diabetes. |
format | Online Article Text |
id | pubmed-10117783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101177832023-04-21 Antidiabetic activity of Berberis brandisiana is possibly mediated through modulation of insulin signaling pathway, inflammatory cytokines and adipocytokines in high fat diet and streptozotocin-administered rats Mehdi, Shumaila Mehmood, Malik Hassan Ahmed, Mobeen Ghulam Ashfaq, Usman Ali Front Pharmacol Pharmacology Medicinal plants play a key role in protection of chronic non-communicable ailments like diabetes, hypertension and dyslipidemia. Berberis brandisiana Ahrendt (Berberidaceae) is traditionally used to treat diabetes, liver problems, wounds, arthritis, infections, swelling and tumors. It is also known to be enriched with multiple phytoconstituents including berbamine, berberine, quercetin, gallic acid, caffeic acid, vanillic acid, benzoic acid, chlorogenic acid, syringic acid, p-coumaric acid, m-coumaric acid and ferulic acid. The efficacy of B. brandisiana has not been established yet in diabetes. This study has been planned to assess the antidiabetic activity of B. brandisiana in high fat diet and streptozotocin (HFD/STZ)-induced diabetes using animals. Administration of aqueous methanolic extract of B. brandisiana (AMEBB) and berbamine (Berb) for 8 weeks caused a dose dependent marked (p < 0.01) rise in serum insulin and HDL levels with a significant decline (p < 0.01) in glucose, triglycerides, glycosylated hemoglobin (HbA1c), cholesterol, LDL, LFTs and RFTs levels when compared with only HFD/STZ-administered rats. AMEBB and Berb also modulated inflammatory biomarkers (TNF-α, IL-6) and adipocytokines (leptin, adiponectin and chemerin). AMEBB (150 mg/kg and 300 mg/kg) and Berb (80 mg/kg and 160 mg/kg) treated rats showed a marked increase (p < 0.001) in catalase levels (Units/mg) in pancreas (42.4 ± 0.24, 47.4 ± 0.51), (38.2 ± 0.583, 48.6 ± 1.03) and liver (52 ± 1.41, 63.2 ± 0.51), (57.2 ± 0.58, 61.6 ± 1.24) and superoxide dismutase levels (Units/mg) in pancreas (34.8 ± 1.46, 38.2 ± 0.58), (33.2 ± 0.80, 40.4 ± 1.96) and liver (31.8 ± 1.52, 36.8 ± 0.96), (30 ± 0.70, 38.4 ± 0.81),respectively while a significant (p < 0.01) decrease in serum melondialdehyde levels (nmol/g) in pancreas (7.34 ± 0.17, 6.22 ± 0.22), (7.34 ± 0.20, 6.34 ± 0.11) and liver (9.08 ± 0.31,8.18 ± 0.29), (9.34 ± 0.10, 8.86 ± 0.24) compared to the data of only HFD/STZ-fed rats. Histopathological studies of pancreas, liver, kidney, heart and aorta revealed restoration of normal tissue architect in AMEBB and Berb treated rats. When mRNA expressions of candidate genes were assessed, AMEBB and Berb showed upregulation of IRS-1, SIRT1, GLUT-4 and downregulation of ADAM17. These findings suggest that AMEBB and Berb possess antidiabetic activity, possibly due to its effect on oxidative stress, glucose metabolism, inflammatory biomarkers and adipocytokines levels. Further upregulation of IRS-1, SIRT1, GLUT-4 and downregulation of ADAM17, demonstrated its potential impact on glucose homeostasis, insulin resistance and chronic inflammatory markers. Thus, this study provides support to the medicinal use of B. brandisiana and berbamine in diabetes. Frontiers Media S.A. 2023-04-06 /pmc/articles/PMC10117783/ /pubmed/37089941 http://dx.doi.org/10.3389/fphar.2023.1085013 Text en Copyright © 2023 Mehdi, Mehmood, Ahmed and Ashfaq. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Mehdi, Shumaila Mehmood, Malik Hassan Ahmed, Mobeen Ghulam Ashfaq, Usman Ali Antidiabetic activity of Berberis brandisiana is possibly mediated through modulation of insulin signaling pathway, inflammatory cytokines and adipocytokines in high fat diet and streptozotocin-administered rats |
title | Antidiabetic activity of Berberis brandisiana is possibly mediated through modulation of insulin signaling pathway, inflammatory cytokines and adipocytokines in high fat diet and streptozotocin-administered rats |
title_full | Antidiabetic activity of Berberis brandisiana is possibly mediated through modulation of insulin signaling pathway, inflammatory cytokines and adipocytokines in high fat diet and streptozotocin-administered rats |
title_fullStr | Antidiabetic activity of Berberis brandisiana is possibly mediated through modulation of insulin signaling pathway, inflammatory cytokines and adipocytokines in high fat diet and streptozotocin-administered rats |
title_full_unstemmed | Antidiabetic activity of Berberis brandisiana is possibly mediated through modulation of insulin signaling pathway, inflammatory cytokines and adipocytokines in high fat diet and streptozotocin-administered rats |
title_short | Antidiabetic activity of Berberis brandisiana is possibly mediated through modulation of insulin signaling pathway, inflammatory cytokines and adipocytokines in high fat diet and streptozotocin-administered rats |
title_sort | antidiabetic activity of berberis brandisiana is possibly mediated through modulation of insulin signaling pathway, inflammatory cytokines and adipocytokines in high fat diet and streptozotocin-administered rats |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117783/ https://www.ncbi.nlm.nih.gov/pubmed/37089941 http://dx.doi.org/10.3389/fphar.2023.1085013 |
work_keys_str_mv | AT mehdishumaila antidiabeticactivityofberberisbrandisianaispossiblymediatedthroughmodulationofinsulinsignalingpathwayinflammatorycytokinesandadipocytokinesinhighfatdietandstreptozotocinadministeredrats AT mehmoodmalikhassan antidiabeticactivityofberberisbrandisianaispossiblymediatedthroughmodulationofinsulinsignalingpathwayinflammatorycytokinesandadipocytokinesinhighfatdietandstreptozotocinadministeredrats AT ahmedmobeenghulam antidiabeticactivityofberberisbrandisianaispossiblymediatedthroughmodulationofinsulinsignalingpathwayinflammatorycytokinesandadipocytokinesinhighfatdietandstreptozotocinadministeredrats AT ashfaqusmanali antidiabeticactivityofberberisbrandisianaispossiblymediatedthroughmodulationofinsulinsignalingpathwayinflammatorycytokinesandadipocytokinesinhighfatdietandstreptozotocinadministeredrats |