Cargando…
Comparability of 24-hour composite and grab samples for detection of SARS-2-CoV RNA in wastewater
Wastewater surveillance is a cost-effective way to monitor pathogen prevalence and transmission patterns in the entire community. Here, we compare 24-hour composite and grab samples collected during September 2020 from several municipalities in New York State to detect SARS-CoV-2. A total of 45 pair...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117866/ https://www.ncbi.nlm.nih.gov/pubmed/37332496 http://dx.doi.org/10.1093/femsmc/xtac017 |
Sumario: | Wastewater surveillance is a cost-effective way to monitor pathogen prevalence and transmission patterns in the entire community. Here, we compare 24-hour composite and grab samples collected during September 2020 from several municipalities in New York State to detect SARS-CoV-2. A total of 45 paired samples (90 total samples) from three counties and 14 wastewater treatment plants were available for analysis. The categorical comparison (SARS-CoV-2 genetic material detected and quantifiable, genetic material detected but below the limits of quantification, and genetic material not detected) between the grab and composite samples was quite strong, with 91.1% agreement (kappa P-value < .001). The correlations among the quantifiable grab and composite samples were statistically significant yet modest for SARS2-CoV RNA (Pearson correlation = 0.44, P = .02), crAssphage cDNA (Pearson correlation = 0.36, P = .02), and crAssphage DNA (Pearson correlation = 0.46, P = .002). We found good comparison between grab and 24-hour composite samples for detecting SARS-CoV-2 RNA from municipal wastewater treatment plants. Grab sampling is an efficient and cost-effective method to monitor for the presence of SARS-CoV-2 in the entire community. |
---|