Cargando…
Achieving descriptive accuracy in explanations via argumentation: The case of probabilistic classifiers
The pursuit of trust in and fairness of AI systems in order to enable human-centric goals has been gathering pace of late, often supported by the use of explanations for the outputs of these systems. Several properties of explanations have been highlighted as critical for achieving trustworthy and f...
Autores principales: | Albini, Emanuele, Rago, Antonio, Baroni, Pietro, Toni, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117939/ https://www.ncbi.nlm.nih.gov/pubmed/37091304 http://dx.doi.org/10.3389/frai.2023.1099407 |
Ejemplares similares
-
Argumentation and explanation in the law
por: Rotolo, Antonino, et al.
Publicado: (2023) -
EQRbot: A chatbot delivering EQR argument-based explanations
por: Castagna, Federico, et al.
Publicado: (2023) -
An argumentation semantics for rational human evaluation of arguments
por: Cramer, Marcos, et al.
Publicado: (2023) -
Developing a Conversational Agent’s Capability to Identify Structural Wrongness in Arguments Based on Toulmin’s Model of Arguments
por: Mirzababaei, Behzad, et al.
Publicado: (2021) -
Argumentation: A calculus for Human-Centric AI
por: Dietz, Emmanuelle, et al.
Publicado: (2022)