Cargando…
Prognostic prediction based on histopathologic features of tumor microenvironment in colorectal cancer
PURPOSE: To automatically quantify colorectal tumor microenvironment (TME) in hematoxylin and eosin stained whole slide images (WSIs), and to develop a TME signature for prognostic prediction in colorectal cancer (CRC). METHODS: A deep learning model based on VGG19 architecture and transfer learning...
Autores principales: | Shi, Liang, Zhang, Yuhao, Wang, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117979/ https://www.ncbi.nlm.nih.gov/pubmed/37089601 http://dx.doi.org/10.3389/fmed.2023.1154077 |
Ejemplares similares
-
Review of Histopathological and Molecular Prognostic Features in Colorectal Cancer
por: Marzouk, Ola, et al.
Publicado: (2011) -
Tumor Microenvironment Shapes Colorectal Cancer Progression, Metastasis, and Treatment Responses
por: Li, Jun, et al.
Publicado: (2022) -
Predicting melanoma survival and metastasis with interpretable histopathological features and machine learning models
por: Couetil, Justin, et al.
Publicado: (2023) -
HAMP as a Prognostic Biomarker for Colorectal Cancer Based on Tumor Microenvironment Analysis
por: Wei, Fang-Ze, et al.
Publicado: (2022) -
Histopathological Significance and Prognostic Impact of Tumor Budding in Colorectal Cancer
por: Mehta, Anurag, et al.
Publicado: (2018)