Cargando…
DOMINO: Domain-aware loss for deep learning calibration
Deep learning has achieved the state-of-the-art performance across medical imaging tasks; however, model calibration is often not considered. Uncalibrated models are potentially dangerous in high-risk applications since the user does not know when they will fail. Therefore, this paper proposes a nov...
Autores principales: | Stolte, Skylar E., Volle, Kyle, Indahlastari, Aprinda, Albizu, Alejandro, Woods, Adam J., Brink, Kevin, Hale, Matthew, Fang, Ruogu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10118072/ https://www.ncbi.nlm.nih.gov/pubmed/37091721 http://dx.doi.org/10.1016/j.simpa.2023.100478 |
Ejemplares similares
-
Machine learning and individual variability in electric field characteristics predict tDCS treatment response
por: Albizu, Alejandro, et al.
Publicado: (2020) -
A Systematic Review and Meta-Analysis of Transcranial Direct Current Stimulation to Remediate Age-Related Cognitive Decline in Healthy Older Adults
por: Indahlastari, Aprinda, et al.
Publicado: (2021) -
Impact of Transcranial Direct Current Stimulation and Cognitive Training on Frontal Lobe Neurotransmitter Concentrations
por: Alvarez-Alvarado, Stacey, et al.
Publicado: (2021) -
DOMINO: a database of domain–peptide interactions
por: Ceol, Arnaud, et al.
Publicado: (2007) -
Effects of in-Scanner Bilateral Frontal tDCS on Functional Connectivity of the Working Memory Network in Older Adults
por: Nissim, Nicole R., et al.
Publicado: (2019)