Cargando…

Energy evolution and crack development characteristics of sandstone under freeze-thaw cycles by digital image correlation

Freeze-thaw erosion is the main reason for rock mass instability in cold regions and poses major threats to public safety. In this study, the stress threshold, energy, and strain field evolution of sandstone and the variation in stress intensity factor of fractures in various stress fields were all...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Junzu, Jin, Jiaxu, Feng, Jiaju, Qin, Zhifa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10118107/
https://www.ncbi.nlm.nih.gov/pubmed/37079605
http://dx.doi.org/10.1371/journal.pone.0283378
Descripción
Sumario:Freeze-thaw erosion is the main reason for rock mass instability in cold regions and poses major threats to public safety. In this study, the stress threshold, energy, and strain field evolution of sandstone and the variation in stress intensity factor of fractures in various stress fields were all investigated after freeze-thaw cycles by uniaxial compression tests and digital image correlation technology. The results show that the elastic modulus, crack initiation stress, and peak stress all fell by 97%, 92.5%, and 89.9%, respectively, as the number of freeze-thaw cycles approaches 80. Elastic energy’s storage capacity also dropped from 0.85 to 0.17. Sandstone’s strain was increased by freeze-thaw erosion, which also improved ductility and shortened the cracking time. The stress intensity factor at the crack tip was positively correlated with the tip inclination angle and negatively correlated with the number of freeze-thaw cycles. This study provides a useful reference for understanding the stability of rock masses and the characteristics of crack derivation in cold regions.