Cargando…
SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis
The recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocytoplasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physiological processes. However, the upstream signal con...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10118272/ https://www.ncbi.nlm.nih.gov/pubmed/36739885 http://dx.doi.org/10.1093/plcell/koad023 |
_version_ | 1785028773226217472 |
---|---|
author | Bi, Yang Shrestha, Ruben Zhang, Zhenzhen Hsu, Chuan-Chih Reyes, Andres V Karunadasa, Sumudu Baker, Peter R Maynard, Jason C Liu, Yang Hakimi, Amirmansoor Lopez-Ferrer, Daniel Hassan, Tahmid Chalkley, Robert J Xu, Shou-Ling Wang, Zhi-Yong |
author_facet | Bi, Yang Shrestha, Ruben Zhang, Zhenzhen Hsu, Chuan-Chih Reyes, Andres V Karunadasa, Sumudu Baker, Peter R Maynard, Jason C Liu, Yang Hakimi, Amirmansoor Lopez-Ferrer, Daniel Hassan, Tahmid Chalkley, Robert J Xu, Shou-Ling Wang, Zhi-Yong |
author_sort | Bi, Yang |
collection | PubMed |
description | The recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocytoplasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physiological processes. However, the upstream signal controlling SPY activity and the downstream substrate proteins O-fucosylated by SPY remain largely unknown. Here, we demonstrated that SPY mediates sugar-dependent growth in Arabidopsis (Arabidopsis thaliana). We further identified hundreds of O-fucosylated proteins using lectin affinity chromatography followed by mass spectrometry. All the O-fucosylation events quantified in our proteomic analyses were undetectable or dramatically decreased in the spy mutants, and thus likely catalyzed by SPY. The O-fucosylome includes mostly nuclear and cytosolic proteins. Many O-fucosylated proteins function in essential cellular processes, phytohormone signaling, and developmental programs, consistent with the genetic functions of SPY. The O-fucosylome also includes many proteins modified by O-linked N-acetylglucosamine (O-GlcNAc) and by phosphorylation downstream of the target of rapamycin (TOR) kinase, revealing the convergence of these nutrient signaling pathways on key regulatory functions such as post-transcriptional/translational regulation and phytohormone responses. Our study identified numerous targets of SPY/O-fucosylation and potential nodes of crosstalk among sugar/nutrient signaling pathways, enabling future dissection of the signaling network that mediates sugar regulation of plant growth and development. |
format | Online Article Text |
id | pubmed-10118272 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101182722023-04-21 SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis Bi, Yang Shrestha, Ruben Zhang, Zhenzhen Hsu, Chuan-Chih Reyes, Andres V Karunadasa, Sumudu Baker, Peter R Maynard, Jason C Liu, Yang Hakimi, Amirmansoor Lopez-Ferrer, Daniel Hassan, Tahmid Chalkley, Robert J Xu, Shou-Ling Wang, Zhi-Yong Plant Cell Breakthrough Report The recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocytoplasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physiological processes. However, the upstream signal controlling SPY activity and the downstream substrate proteins O-fucosylated by SPY remain largely unknown. Here, we demonstrated that SPY mediates sugar-dependent growth in Arabidopsis (Arabidopsis thaliana). We further identified hundreds of O-fucosylated proteins using lectin affinity chromatography followed by mass spectrometry. All the O-fucosylation events quantified in our proteomic analyses were undetectable or dramatically decreased in the spy mutants, and thus likely catalyzed by SPY. The O-fucosylome includes mostly nuclear and cytosolic proteins. Many O-fucosylated proteins function in essential cellular processes, phytohormone signaling, and developmental programs, consistent with the genetic functions of SPY. The O-fucosylome also includes many proteins modified by O-linked N-acetylglucosamine (O-GlcNAc) and by phosphorylation downstream of the target of rapamycin (TOR) kinase, revealing the convergence of these nutrient signaling pathways on key regulatory functions such as post-transcriptional/translational regulation and phytohormone responses. Our study identified numerous targets of SPY/O-fucosylation and potential nodes of crosstalk among sugar/nutrient signaling pathways, enabling future dissection of the signaling network that mediates sugar regulation of plant growth and development. Oxford University Press 2023-02-06 /pmc/articles/PMC10118272/ /pubmed/36739885 http://dx.doi.org/10.1093/plcell/koad023 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of American Society of Plant Biologists. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Breakthrough Report Bi, Yang Shrestha, Ruben Zhang, Zhenzhen Hsu, Chuan-Chih Reyes, Andres V Karunadasa, Sumudu Baker, Peter R Maynard, Jason C Liu, Yang Hakimi, Amirmansoor Lopez-Ferrer, Daniel Hassan, Tahmid Chalkley, Robert J Xu, Shou-Ling Wang, Zhi-Yong SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis |
title | SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis |
title_full | SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis |
title_fullStr | SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis |
title_full_unstemmed | SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis |
title_short | SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis |
title_sort | spindly mediates o-fucosylation of hundreds of proteins and sugar-dependent growth in arabidopsis |
topic | Breakthrough Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10118272/ https://www.ncbi.nlm.nih.gov/pubmed/36739885 http://dx.doi.org/10.1093/plcell/koad023 |
work_keys_str_mv | AT biyang spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT shrestharuben spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT zhangzhenzhen spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT hsuchuanchih spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT reyesandresv spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT karunadasasumudu spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT bakerpeterr spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT maynardjasonc spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT liuyang spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT hakimiamirmansoor spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT lopezferrerdaniel spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT hassantahmid spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT chalkleyrobertj spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT xushouling spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis AT wangzhiyong spindlymediatesofucosylationofhundredsofproteinsandsugardependentgrowthinarabidopsis |