Cargando…
Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data
For accurate diagnosis of interstitial lung disease (ILD), a consensus of radiologic, pathological, and clinical findings is vital. Management of ILD also requires thorough follow-up with computed tomography (CT) studies and lung function tests to assess disease progression, severity, and response t...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119160/ https://www.ncbi.nlm.nih.gov/pubmed/37080956 http://dx.doi.org/10.1038/s41467-023-37720-5 |
_version_ | 1785028964347019264 |
---|---|
author | Mei, Xueyan Liu, Zelong Singh, Ayushi Lange, Marcia Boddu, Priyanka Gong, Jingqi Q. X. Lee, Justine DeMarco, Cody Cao, Chendi Platt, Samantha Sivakumar, Ganesh Gross, Benjamin Huang, Mingqian Masseaux, Joy Dua, Sakshi Bernheim, Adam Chung, Michael Deyer, Timothy Jacobi, Adam Padilla, Maria Fayad, Zahi A. Yang, Yang |
author_facet | Mei, Xueyan Liu, Zelong Singh, Ayushi Lange, Marcia Boddu, Priyanka Gong, Jingqi Q. X. Lee, Justine DeMarco, Cody Cao, Chendi Platt, Samantha Sivakumar, Ganesh Gross, Benjamin Huang, Mingqian Masseaux, Joy Dua, Sakshi Bernheim, Adam Chung, Michael Deyer, Timothy Jacobi, Adam Padilla, Maria Fayad, Zahi A. Yang, Yang |
author_sort | Mei, Xueyan |
collection | PubMed |
description | For accurate diagnosis of interstitial lung disease (ILD), a consensus of radiologic, pathological, and clinical findings is vital. Management of ILD also requires thorough follow-up with computed tomography (CT) studies and lung function tests to assess disease progression, severity, and response to treatment. However, accurate classification of ILD subtypes can be challenging, especially for those not accustomed to reading chest CTs regularly. Dynamic models to predict patient survival rates based on longitudinal data are challenging to create due to disease complexity, variation, and irregular visit intervals. Here, we utilize RadImageNet pretrained models to diagnose five types of ILD with multimodal data and a transformer model to determine a patient’s 3-year survival rate. When clinical history and associated CT scans are available, the proposed deep learning system can help clinicians diagnose and classify ILD patients and, importantly, dynamically predict disease progression and prognosis. |
format | Online Article Text |
id | pubmed-10119160 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101191602023-04-22 Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data Mei, Xueyan Liu, Zelong Singh, Ayushi Lange, Marcia Boddu, Priyanka Gong, Jingqi Q. X. Lee, Justine DeMarco, Cody Cao, Chendi Platt, Samantha Sivakumar, Ganesh Gross, Benjamin Huang, Mingqian Masseaux, Joy Dua, Sakshi Bernheim, Adam Chung, Michael Deyer, Timothy Jacobi, Adam Padilla, Maria Fayad, Zahi A. Yang, Yang Nat Commun Article For accurate diagnosis of interstitial lung disease (ILD), a consensus of radiologic, pathological, and clinical findings is vital. Management of ILD also requires thorough follow-up with computed tomography (CT) studies and lung function tests to assess disease progression, severity, and response to treatment. However, accurate classification of ILD subtypes can be challenging, especially for those not accustomed to reading chest CTs regularly. Dynamic models to predict patient survival rates based on longitudinal data are challenging to create due to disease complexity, variation, and irregular visit intervals. Here, we utilize RadImageNet pretrained models to diagnose five types of ILD with multimodal data and a transformer model to determine a patient’s 3-year survival rate. When clinical history and associated CT scans are available, the proposed deep learning system can help clinicians diagnose and classify ILD patients and, importantly, dynamically predict disease progression and prognosis. Nature Publishing Group UK 2023-04-20 /pmc/articles/PMC10119160/ /pubmed/37080956 http://dx.doi.org/10.1038/s41467-023-37720-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Mei, Xueyan Liu, Zelong Singh, Ayushi Lange, Marcia Boddu, Priyanka Gong, Jingqi Q. X. Lee, Justine DeMarco, Cody Cao, Chendi Platt, Samantha Sivakumar, Ganesh Gross, Benjamin Huang, Mingqian Masseaux, Joy Dua, Sakshi Bernheim, Adam Chung, Michael Deyer, Timothy Jacobi, Adam Padilla, Maria Fayad, Zahi A. Yang, Yang Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data |
title | Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data |
title_full | Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data |
title_fullStr | Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data |
title_full_unstemmed | Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data |
title_short | Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data |
title_sort | interstitial lung disease diagnosis and prognosis using an ai system integrating longitudinal data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119160/ https://www.ncbi.nlm.nih.gov/pubmed/37080956 http://dx.doi.org/10.1038/s41467-023-37720-5 |
work_keys_str_mv | AT meixueyan interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT liuzelong interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT singhayushi interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT langemarcia interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT boddupriyanka interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT gongjingqiqx interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT leejustine interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT demarcocody interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT caochendi interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT plattsamantha interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT sivakumarganesh interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT grossbenjamin interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT huangmingqian interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT masseauxjoy interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT duasakshi interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT bernheimadam interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT chungmichael interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT deyertimothy interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT jacobiadam interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT padillamaria interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT fayadzahia interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata AT yangyang interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata |