Cargando…

Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data

For accurate diagnosis of interstitial lung disease (ILD), a consensus of radiologic, pathological, and clinical findings is vital. Management of ILD also requires thorough follow-up with computed tomography (CT) studies and lung function tests to assess disease progression, severity, and response t...

Descripción completa

Detalles Bibliográficos
Autores principales: Mei, Xueyan, Liu, Zelong, Singh, Ayushi, Lange, Marcia, Boddu, Priyanka, Gong, Jingqi Q. X., Lee, Justine, DeMarco, Cody, Cao, Chendi, Platt, Samantha, Sivakumar, Ganesh, Gross, Benjamin, Huang, Mingqian, Masseaux, Joy, Dua, Sakshi, Bernheim, Adam, Chung, Michael, Deyer, Timothy, Jacobi, Adam, Padilla, Maria, Fayad, Zahi A., Yang, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119160/
https://www.ncbi.nlm.nih.gov/pubmed/37080956
http://dx.doi.org/10.1038/s41467-023-37720-5
_version_ 1785028964347019264
author Mei, Xueyan
Liu, Zelong
Singh, Ayushi
Lange, Marcia
Boddu, Priyanka
Gong, Jingqi Q. X.
Lee, Justine
DeMarco, Cody
Cao, Chendi
Platt, Samantha
Sivakumar, Ganesh
Gross, Benjamin
Huang, Mingqian
Masseaux, Joy
Dua, Sakshi
Bernheim, Adam
Chung, Michael
Deyer, Timothy
Jacobi, Adam
Padilla, Maria
Fayad, Zahi A.
Yang, Yang
author_facet Mei, Xueyan
Liu, Zelong
Singh, Ayushi
Lange, Marcia
Boddu, Priyanka
Gong, Jingqi Q. X.
Lee, Justine
DeMarco, Cody
Cao, Chendi
Platt, Samantha
Sivakumar, Ganesh
Gross, Benjamin
Huang, Mingqian
Masseaux, Joy
Dua, Sakshi
Bernheim, Adam
Chung, Michael
Deyer, Timothy
Jacobi, Adam
Padilla, Maria
Fayad, Zahi A.
Yang, Yang
author_sort Mei, Xueyan
collection PubMed
description For accurate diagnosis of interstitial lung disease (ILD), a consensus of radiologic, pathological, and clinical findings is vital. Management of ILD also requires thorough follow-up with computed tomography (CT) studies and lung function tests to assess disease progression, severity, and response to treatment. However, accurate classification of ILD subtypes can be challenging, especially for those not accustomed to reading chest CTs regularly. Dynamic models to predict patient survival rates based on longitudinal data are challenging to create due to disease complexity, variation, and irregular visit intervals. Here, we utilize RadImageNet pretrained models to diagnose five types of ILD with multimodal data and a transformer model to determine a patient’s 3-year survival rate. When clinical history and associated CT scans are available, the proposed deep learning system can help clinicians diagnose and classify ILD patients and, importantly, dynamically predict disease progression and prognosis.
format Online
Article
Text
id pubmed-10119160
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101191602023-04-22 Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data Mei, Xueyan Liu, Zelong Singh, Ayushi Lange, Marcia Boddu, Priyanka Gong, Jingqi Q. X. Lee, Justine DeMarco, Cody Cao, Chendi Platt, Samantha Sivakumar, Ganesh Gross, Benjamin Huang, Mingqian Masseaux, Joy Dua, Sakshi Bernheim, Adam Chung, Michael Deyer, Timothy Jacobi, Adam Padilla, Maria Fayad, Zahi A. Yang, Yang Nat Commun Article For accurate diagnosis of interstitial lung disease (ILD), a consensus of radiologic, pathological, and clinical findings is vital. Management of ILD also requires thorough follow-up with computed tomography (CT) studies and lung function tests to assess disease progression, severity, and response to treatment. However, accurate classification of ILD subtypes can be challenging, especially for those not accustomed to reading chest CTs regularly. Dynamic models to predict patient survival rates based on longitudinal data are challenging to create due to disease complexity, variation, and irregular visit intervals. Here, we utilize RadImageNet pretrained models to diagnose five types of ILD with multimodal data and a transformer model to determine a patient’s 3-year survival rate. When clinical history and associated CT scans are available, the proposed deep learning system can help clinicians diagnose and classify ILD patients and, importantly, dynamically predict disease progression and prognosis. Nature Publishing Group UK 2023-04-20 /pmc/articles/PMC10119160/ /pubmed/37080956 http://dx.doi.org/10.1038/s41467-023-37720-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mei, Xueyan
Liu, Zelong
Singh, Ayushi
Lange, Marcia
Boddu, Priyanka
Gong, Jingqi Q. X.
Lee, Justine
DeMarco, Cody
Cao, Chendi
Platt, Samantha
Sivakumar, Ganesh
Gross, Benjamin
Huang, Mingqian
Masseaux, Joy
Dua, Sakshi
Bernheim, Adam
Chung, Michael
Deyer, Timothy
Jacobi, Adam
Padilla, Maria
Fayad, Zahi A.
Yang, Yang
Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data
title Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data
title_full Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data
title_fullStr Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data
title_full_unstemmed Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data
title_short Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data
title_sort interstitial lung disease diagnosis and prognosis using an ai system integrating longitudinal data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119160/
https://www.ncbi.nlm.nih.gov/pubmed/37080956
http://dx.doi.org/10.1038/s41467-023-37720-5
work_keys_str_mv AT meixueyan interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT liuzelong interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT singhayushi interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT langemarcia interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT boddupriyanka interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT gongjingqiqx interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT leejustine interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT demarcocody interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT caochendi interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT plattsamantha interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT sivakumarganesh interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT grossbenjamin interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT huangmingqian interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT masseauxjoy interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT duasakshi interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT bernheimadam interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT chungmichael interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT deyertimothy interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT jacobiadam interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT padillamaria interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT fayadzahia interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata
AT yangyang interstitiallungdiseasediagnosisandprognosisusinganaisystemintegratinglongitudinaldata