Cargando…
Cardiac biophysical detailed synergetic modality rendering and visible correlation
The heart is a vital organ in the human body. Research and treatment for the heart have made remarkable progress, and the functional mechanisms of the heart have been simulated and rendered through the construction of relevant models. The current methods for rendering cardiac functional mechanisms o...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119415/ https://www.ncbi.nlm.nih.gov/pubmed/37089421 http://dx.doi.org/10.3389/fphys.2023.1086154 |
Sumario: | The heart is a vital organ in the human body. Research and treatment for the heart have made remarkable progress, and the functional mechanisms of the heart have been simulated and rendered through the construction of relevant models. The current methods for rendering cardiac functional mechanisms only consider one type of modality, which means they cannot show how different types of modality, such as physical and physiological, work together. To realistically represent the three-dimensional synergetic biological modality of the heart, this paper proposes a WebGL-based cardiac synergetic modality rendering framework to visualize the cardiac physical volume data and present synergetic correspondence rendering of the cardiac electrophysiological modality. By constructing the biological detailed interactive histogram, users can implement local details rendering for the heart, which could reveal the cardiac biology details more clearly. We also present cardiac physical-physiological correlation visualization to explore cardiac biological association characteristics. Experimental results show that the proposed framework can provide favorable cardiac biological detailed synergetic modality rendering results in terms of both effectiveness and efficiency. Compared with existing methods, the framework can facilitate the study of the internal mechanism of the heart and subsequently deduce the process of initiation, development, and transformation from a healthy heart to an ill one, and thereby improve the diagnosis and treatment of cardiac disorders. |
---|