Cargando…
Forecasting patient flows with pandemic induced concept drift using explainable machine learning
Accurately forecasting patient arrivals at Urgent Care Clinics (UCCs) and Emergency Departments (EDs) is important for effective resourcing and patient care. However, correctly estimating patient flows is not straightforward since it depends on many drivers. The predictability of patient arrivals ha...
Autores principales: | Susnjak, Teo, Maddigan, Paula |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119825/ https://www.ncbi.nlm.nih.gov/pubmed/37122585 http://dx.doi.org/10.1140/epjds/s13688-023-00387-5 |
Ejemplares similares
-
Forecast and analysis of the cosmological redshift drift
por: Lazkoz, Ruth, et al.
Publicado: (2018) -
From data to interpretable models: machine learning for soil moisture forecasting
por: Basak, Aniruddha, et al.
Publicado: (2022) -
A spatiotemporal machine learning approach to forecasting COVID-19 incidence at the county level in the USA
por: Lucas, Benjamin, et al.
Publicado: (2022) -
Explaining machine-learned particle-flow reconstruction
por: Mokhtar, Farouk, et al.
Publicado: (2021) -
Learning analytics dashboard: a tool for providing actionable insights to learners
por: Susnjak, Teo, et al.
Publicado: (2022)