Cargando…

Gas-modulating microcapsules for spatiotemporal control of hypoxia

Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high load...

Descripción completa

Detalles Bibliográficos
Autores principales: Molley, Thomas G., Jiang, Shouyuan, Ong, Louis, Kopecky, Chantal, Ranaweera, Chavinya D., Jalandhra, Gagan K., Milton, Laura, Kardia, Egi, Zhou, Zeheng, Rnjak-Kovacina, Jelena, Waters, Shafagh A., Toh, Yi-Chin, Kilian, Kristopher A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120079/
https://www.ncbi.nlm.nih.gov/pubmed/37040415
http://dx.doi.org/10.1073/pnas.2217557120
_version_ 1785029122257321984
author Molley, Thomas G.
Jiang, Shouyuan
Ong, Louis
Kopecky, Chantal
Ranaweera, Chavinya D.
Jalandhra, Gagan K.
Milton, Laura
Kardia, Egi
Zhou, Zeheng
Rnjak-Kovacina, Jelena
Waters, Shafagh A.
Toh, Yi-Chin
Kilian, Kristopher A.
author_facet Molley, Thomas G.
Jiang, Shouyuan
Ong, Louis
Kopecky, Chantal
Ranaweera, Chavinya D.
Jalandhra, Gagan K.
Milton, Laura
Kardia, Egi
Zhou, Zeheng
Rnjak-Kovacina, Jelena
Waters, Shafagh A.
Toh, Yi-Chin
Kilian, Kristopher A.
author_sort Molley, Thomas G.
collection PubMed
description Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform’s simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.
format Online
Article
Text
id pubmed-10120079
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-101200792023-10-11 Gas-modulating microcapsules for spatiotemporal control of hypoxia Molley, Thomas G. Jiang, Shouyuan Ong, Louis Kopecky, Chantal Ranaweera, Chavinya D. Jalandhra, Gagan K. Milton, Laura Kardia, Egi Zhou, Zeheng Rnjak-Kovacina, Jelena Waters, Shafagh A. Toh, Yi-Chin Kilian, Kristopher A. Proc Natl Acad Sci U S A Physical Sciences Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform’s simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease. National Academy of Sciences 2023-04-11 2023-04-18 /pmc/articles/PMC10120079/ /pubmed/37040415 http://dx.doi.org/10.1073/pnas.2217557120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Molley, Thomas G.
Jiang, Shouyuan
Ong, Louis
Kopecky, Chantal
Ranaweera, Chavinya D.
Jalandhra, Gagan K.
Milton, Laura
Kardia, Egi
Zhou, Zeheng
Rnjak-Kovacina, Jelena
Waters, Shafagh A.
Toh, Yi-Chin
Kilian, Kristopher A.
Gas-modulating microcapsules for spatiotemporal control of hypoxia
title Gas-modulating microcapsules for spatiotemporal control of hypoxia
title_full Gas-modulating microcapsules for spatiotemporal control of hypoxia
title_fullStr Gas-modulating microcapsules for spatiotemporal control of hypoxia
title_full_unstemmed Gas-modulating microcapsules for spatiotemporal control of hypoxia
title_short Gas-modulating microcapsules for spatiotemporal control of hypoxia
title_sort gas-modulating microcapsules for spatiotemporal control of hypoxia
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120079/
https://www.ncbi.nlm.nih.gov/pubmed/37040415
http://dx.doi.org/10.1073/pnas.2217557120
work_keys_str_mv AT molleythomasg gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT jiangshouyuan gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT onglouis gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT kopeckychantal gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT ranaweerachavinyad gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT jalandhragagank gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT miltonlaura gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT kardiaegi gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT zhouzeheng gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT rnjakkovacinajelena gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT watersshafagha gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT tohyichin gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia
AT kiliankristophera gasmodulatingmicrocapsulesforspatiotemporalcontrolofhypoxia