Cargando…
Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: an artificial intelligence model study based on machine learning
OBJECTIVE: In this study, we aimed to investigate the predictive efficacy of magnetic resonance imaging (MRI) radiomics features at different time points of neoadjuvant therapy for rectal cancer in patients with pathological complete response (pCR). Furthermore, we aimed to develop and validate a ra...
Autores principales: | Peng, Jiaxuan, Wang, Wei, Jin, Hui, Qin, Xue, Hou, Jie, Yang, Zhang, Shu, Zhenyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120125/ https://www.ncbi.nlm.nih.gov/pubmed/37085830 http://dx.doi.org/10.1186/s12885-023-10855-w |
Ejemplares similares
-
Radiomics Signature Based on Support Vector Machines for the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer
por: Li, Chao, et al.
Publicado: (2023) -
External Validation of a Radiomics Model for the Prediction of Complete Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer
por: Bordron, Anaïs, et al.
Publicado: (2022) -
Local tuning of radiomics-based model for predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer
por: Tang, Bin, et al.
Publicado: (2022) -
Radiomics for the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer: A Prospective Observational Trial
por: Shi, Liming, et al.
Publicado: (2023) -
Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis
por: Jia, Lu-Lu, et al.
Publicado: (2022)