Cargando…
The prediction of distant metastasis risk for male breast cancer patients based on an interpretable machine learning model
OBJECTIVES: This research was designed to compare the ability of different machine learning (ML) models and nomogram to predict distant metastasis in male breast cancer (MBC) patients and to interpret the optimal ML model by SHapley Additive exPlanations (SHAP) framework. METHODS: Four powerful ML m...
Autores principales: | Zhao, Xuhai, Jiang, Cong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120176/ https://www.ncbi.nlm.nih.gov/pubmed/37085843 http://dx.doi.org/10.1186/s12911-023-02166-8 |
Ejemplares similares
-
Application of interpretable machine learning algorithms to predict distant metastasis in osteosarcoma
por: Bai, Bing‐li, et al.
Publicado: (2022) -
A machine learning-based model for predicting distant metastasis in patients with rectal cancer
por: Qiu, Binxu, et al.
Publicado: (2023) -
Application of machine learning algorithm in predicting distant metastasis of T1 gastric cancer
por: Tian, HuaKai, et al.
Publicado: (2023) -
Predicting Patterns of Distant Metastasis in Breast Cancer Patients following Local Regional Therapy Using Machine Learning
por: Shiner, Audrey, et al.
Publicado: (2023) -
Nomogram for predicting distant metastasis of male breast cancer: A SEER population-based study
por: Wang, Dasong, et al.
Publicado: (2022)