Cargando…
Automated classification of polyps using deep learning architectures and few-shot learning
BACKGROUND: Colorectal cancer is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is a colonoscopy. However, not all colon polyps have the risk of becoming cancerous. Therefore, polyps are classified using different classification systems. After the classification,...
Autores principales: | Krenzer, Adrian, Heil, Stefan, Fitting, Daniel, Matti, Safa, Zoller, Wolfram G., Hann, Alexander, Puppe, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120204/ https://www.ncbi.nlm.nih.gov/pubmed/37081495 http://dx.doi.org/10.1186/s12880-023-01007-4 |
Ejemplares similares
-
Fast machine learning annotation in the medical domain: a semi-automated video annotation tool for gastroenterologists
por: Krenzer, Adrian, et al.
Publicado: (2022) -
A Real-Time Polyp-Detection System with Clinical Application in Colonoscopy Using Deep Convolutional Neural Networks
por: Krenzer, Adrian, et al.
Publicado: (2023) -
Pilot study of a new freely available computer-aided polyp detection system in clinical practice
por: Lux, Thomas J., et al.
Publicado: (2022) -
Development and evaluation of a deep learning model to improve the usability of polyp detection systems during interventions
por: Brand, Markus, et al.
Publicado: (2022) -
Automated human cell classification in sparse datasets using few-shot learning
por: Walsh, Reece, et al.
Publicado: (2022)