Cargando…
Consequences and opportunities arising due to sparser single-cell RNA-seq datasets
With the number of cells measured in single-cell RNA sequencing (scRNA-seq) datasets increasing exponentially and concurrent increased sparsity due to more zero counts being measured for many genes, we demonstrate here that downstream analyses on binary-based gene expression give similar results as...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120229/ https://www.ncbi.nlm.nih.gov/pubmed/37085823 http://dx.doi.org/10.1186/s13059-023-02933-w |
Sumario: | With the number of cells measured in single-cell RNA sequencing (scRNA-seq) datasets increasing exponentially and concurrent increased sparsity due to more zero counts being measured for many genes, we demonstrate here that downstream analyses on binary-based gene expression give similar results as count-based analyses. Moreover, a binary representation scales up to ~ 50-fold more cells that can be analyzed using the same computational resources. We also highlight the possibilities provided by binarized scRNA-seq data. Development of specialized tools for bit-aware implementations of downstream analytical tasks will enable a more fine-grained resolution of biological heterogeneity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02933-w. |
---|