Cargando…
An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping
Proximity labeling (PL) coupled with mass spectrometry has emerged as a powerful technique to map proximal protein interactions in living cells. Large-scale sample processing for proximity proteomics necessitates a high-throughput workflow to reduce hands-on time and increase quantitative reproducib...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120663/ https://www.ncbi.nlm.nih.gov/pubmed/37090610 http://dx.doi.org/10.1101/2023.04.11.536358 |
Sumario: | Proximity labeling (PL) coupled with mass spectrometry has emerged as a powerful technique to map proximal protein interactions in living cells. Large-scale sample processing for proximity proteomics necessitates a high-throughput workflow to reduce hands-on time and increase quantitative reproducibility. To address this issue, we developed a scalable and automated PL pipeline, including generation and characterization of monoclonal cell lines, automated enrichment of biotinylated proteins in a 96-well format, and optimization of the quantitative mass spectrometry (MS) acquisition method. Combined with data-independent acquisition (DIA) MS, our pipeline outperforms manual enrichment and data-dependent acquisition (DDA) MS regarding reproducibility of protein identification and quantification. We apply the pipeline to map subcellular proteomes for endosomes, late endosomes/lysosomes, the Golgi apparatus, and the plasma membrane. Moreover, using serotonin receptor (5HT(2A)) as a model, we investigated agonist-induced dynamics in protein-protein interactions. Importantly, the approach presented here is universally applicable for PL proteomics using all biotinylation-based PL enzymes, increasing both throughput and reproducibility of standard protocols. |
---|