Cargando…

An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping

Proximity labeling (PL) coupled with mass spectrometry has emerged as a powerful technique to map proximal protein interactions in living cells. Large-scale sample processing for proximity proteomics necessitates a high-throughput workflow to reduce hands-on time and increase quantitative reproducib...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Xiaofang, Li, Qiongyu, Polacco, Benjamin J., Patil, Trupti, DiBerto, Jeffrey F., Vartak, Rasika, Xu, Jiewei, Marley, Aaron, Foussard, Helene, Roth, Bryan L., Eckhardt, Manon, Von Zastrow, Mark, Krogan, Nevan J., Hüttenhain, Ruth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120663/
https://www.ncbi.nlm.nih.gov/pubmed/37090610
http://dx.doi.org/10.1101/2023.04.11.536358
_version_ 1785029220126162944
author Zhong, Xiaofang
Li, Qiongyu
Polacco, Benjamin J.
Patil, Trupti
DiBerto, Jeffrey F.
Vartak, Rasika
Xu, Jiewei
Marley, Aaron
Foussard, Helene
Roth, Bryan L.
Eckhardt, Manon
Von Zastrow, Mark
Krogan, Nevan J.
Hüttenhain, Ruth
author_facet Zhong, Xiaofang
Li, Qiongyu
Polacco, Benjamin J.
Patil, Trupti
DiBerto, Jeffrey F.
Vartak, Rasika
Xu, Jiewei
Marley, Aaron
Foussard, Helene
Roth, Bryan L.
Eckhardt, Manon
Von Zastrow, Mark
Krogan, Nevan J.
Hüttenhain, Ruth
author_sort Zhong, Xiaofang
collection PubMed
description Proximity labeling (PL) coupled with mass spectrometry has emerged as a powerful technique to map proximal protein interactions in living cells. Large-scale sample processing for proximity proteomics necessitates a high-throughput workflow to reduce hands-on time and increase quantitative reproducibility. To address this issue, we developed a scalable and automated PL pipeline, including generation and characterization of monoclonal cell lines, automated enrichment of biotinylated proteins in a 96-well format, and optimization of the quantitative mass spectrometry (MS) acquisition method. Combined with data-independent acquisition (DIA) MS, our pipeline outperforms manual enrichment and data-dependent acquisition (DDA) MS regarding reproducibility of protein identification and quantification. We apply the pipeline to map subcellular proteomes for endosomes, late endosomes/lysosomes, the Golgi apparatus, and the plasma membrane. Moreover, using serotonin receptor (5HT(2A)) as a model, we investigated agonist-induced dynamics in protein-protein interactions. Importantly, the approach presented here is universally applicable for PL proteomics using all biotinylation-based PL enzymes, increasing both throughput and reproducibility of standard protocols.
format Online
Article
Text
id pubmed-10120663
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-101206632023-04-22 An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping Zhong, Xiaofang Li, Qiongyu Polacco, Benjamin J. Patil, Trupti DiBerto, Jeffrey F. Vartak, Rasika Xu, Jiewei Marley, Aaron Foussard, Helene Roth, Bryan L. Eckhardt, Manon Von Zastrow, Mark Krogan, Nevan J. Hüttenhain, Ruth bioRxiv Article Proximity labeling (PL) coupled with mass spectrometry has emerged as a powerful technique to map proximal protein interactions in living cells. Large-scale sample processing for proximity proteomics necessitates a high-throughput workflow to reduce hands-on time and increase quantitative reproducibility. To address this issue, we developed a scalable and automated PL pipeline, including generation and characterization of monoclonal cell lines, automated enrichment of biotinylated proteins in a 96-well format, and optimization of the quantitative mass spectrometry (MS) acquisition method. Combined with data-independent acquisition (DIA) MS, our pipeline outperforms manual enrichment and data-dependent acquisition (DDA) MS regarding reproducibility of protein identification and quantification. We apply the pipeline to map subcellular proteomes for endosomes, late endosomes/lysosomes, the Golgi apparatus, and the plasma membrane. Moreover, using serotonin receptor (5HT(2A)) as a model, we investigated agonist-induced dynamics in protein-protein interactions. Importantly, the approach presented here is universally applicable for PL proteomics using all biotinylation-based PL enzymes, increasing both throughput and reproducibility of standard protocols. Cold Spring Harbor Laboratory 2023-04-12 /pmc/articles/PMC10120663/ /pubmed/37090610 http://dx.doi.org/10.1101/2023.04.11.536358 Text en https://creativecommons.org/licenses/by-nd/4.0/This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Zhong, Xiaofang
Li, Qiongyu
Polacco, Benjamin J.
Patil, Trupti
DiBerto, Jeffrey F.
Vartak, Rasika
Xu, Jiewei
Marley, Aaron
Foussard, Helene
Roth, Bryan L.
Eckhardt, Manon
Von Zastrow, Mark
Krogan, Nevan J.
Hüttenhain, Ruth
An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping
title An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping
title_full An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping
title_fullStr An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping
title_full_unstemmed An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping
title_short An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping
title_sort automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120663/
https://www.ncbi.nlm.nih.gov/pubmed/37090610
http://dx.doi.org/10.1101/2023.04.11.536358
work_keys_str_mv AT zhongxiaofang anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT liqiongyu anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT polaccobenjaminj anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT patiltrupti anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT dibertojeffreyf anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT vartakrasika anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT xujiewei anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT marleyaaron anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT foussardhelene anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT rothbryanl anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT eckhardtmanon anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT vonzastrowmark anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT krogannevanj anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT huttenhainruth anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT zhongxiaofang automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT liqiongyu automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT polaccobenjaminj automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT patiltrupti automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT dibertojeffreyf automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT vartakrasika automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT xujiewei automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT marleyaaron automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT foussardhelene automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT rothbryanl automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT eckhardtmanon automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT vonzastrowmark automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT krogannevanj automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping
AT huttenhainruth automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping