Cargando…
An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping
Proximity labeling (PL) coupled with mass spectrometry has emerged as a powerful technique to map proximal protein interactions in living cells. Large-scale sample processing for proximity proteomics necessitates a high-throughput workflow to reduce hands-on time and increase quantitative reproducib...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120663/ https://www.ncbi.nlm.nih.gov/pubmed/37090610 http://dx.doi.org/10.1101/2023.04.11.536358 |
_version_ | 1785029220126162944 |
---|---|
author | Zhong, Xiaofang Li, Qiongyu Polacco, Benjamin J. Patil, Trupti DiBerto, Jeffrey F. Vartak, Rasika Xu, Jiewei Marley, Aaron Foussard, Helene Roth, Bryan L. Eckhardt, Manon Von Zastrow, Mark Krogan, Nevan J. Hüttenhain, Ruth |
author_facet | Zhong, Xiaofang Li, Qiongyu Polacco, Benjamin J. Patil, Trupti DiBerto, Jeffrey F. Vartak, Rasika Xu, Jiewei Marley, Aaron Foussard, Helene Roth, Bryan L. Eckhardt, Manon Von Zastrow, Mark Krogan, Nevan J. Hüttenhain, Ruth |
author_sort | Zhong, Xiaofang |
collection | PubMed |
description | Proximity labeling (PL) coupled with mass spectrometry has emerged as a powerful technique to map proximal protein interactions in living cells. Large-scale sample processing for proximity proteomics necessitates a high-throughput workflow to reduce hands-on time and increase quantitative reproducibility. To address this issue, we developed a scalable and automated PL pipeline, including generation and characterization of monoclonal cell lines, automated enrichment of biotinylated proteins in a 96-well format, and optimization of the quantitative mass spectrometry (MS) acquisition method. Combined with data-independent acquisition (DIA) MS, our pipeline outperforms manual enrichment and data-dependent acquisition (DDA) MS regarding reproducibility of protein identification and quantification. We apply the pipeline to map subcellular proteomes for endosomes, late endosomes/lysosomes, the Golgi apparatus, and the plasma membrane. Moreover, using serotonin receptor (5HT(2A)) as a model, we investigated agonist-induced dynamics in protein-protein interactions. Importantly, the approach presented here is universally applicable for PL proteomics using all biotinylation-based PL enzymes, increasing both throughput and reproducibility of standard protocols. |
format | Online Article Text |
id | pubmed-10120663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-101206632023-04-22 An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping Zhong, Xiaofang Li, Qiongyu Polacco, Benjamin J. Patil, Trupti DiBerto, Jeffrey F. Vartak, Rasika Xu, Jiewei Marley, Aaron Foussard, Helene Roth, Bryan L. Eckhardt, Manon Von Zastrow, Mark Krogan, Nevan J. Hüttenhain, Ruth bioRxiv Article Proximity labeling (PL) coupled with mass spectrometry has emerged as a powerful technique to map proximal protein interactions in living cells. Large-scale sample processing for proximity proteomics necessitates a high-throughput workflow to reduce hands-on time and increase quantitative reproducibility. To address this issue, we developed a scalable and automated PL pipeline, including generation and characterization of monoclonal cell lines, automated enrichment of biotinylated proteins in a 96-well format, and optimization of the quantitative mass spectrometry (MS) acquisition method. Combined with data-independent acquisition (DIA) MS, our pipeline outperforms manual enrichment and data-dependent acquisition (DDA) MS regarding reproducibility of protein identification and quantification. We apply the pipeline to map subcellular proteomes for endosomes, late endosomes/lysosomes, the Golgi apparatus, and the plasma membrane. Moreover, using serotonin receptor (5HT(2A)) as a model, we investigated agonist-induced dynamics in protein-protein interactions. Importantly, the approach presented here is universally applicable for PL proteomics using all biotinylation-based PL enzymes, increasing both throughput and reproducibility of standard protocols. Cold Spring Harbor Laboratory 2023-04-12 /pmc/articles/PMC10120663/ /pubmed/37090610 http://dx.doi.org/10.1101/2023.04.11.536358 Text en https://creativecommons.org/licenses/by-nd/4.0/This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Zhong, Xiaofang Li, Qiongyu Polacco, Benjamin J. Patil, Trupti DiBerto, Jeffrey F. Vartak, Rasika Xu, Jiewei Marley, Aaron Foussard, Helene Roth, Bryan L. Eckhardt, Manon Von Zastrow, Mark Krogan, Nevan J. Hüttenhain, Ruth An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping |
title | An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping |
title_full | An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping |
title_fullStr | An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping |
title_full_unstemmed | An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping |
title_short | An automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping |
title_sort | automated proximity proteomics pipeline for subcellular proteome and protein interaction mapping |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120663/ https://www.ncbi.nlm.nih.gov/pubmed/37090610 http://dx.doi.org/10.1101/2023.04.11.536358 |
work_keys_str_mv | AT zhongxiaofang anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT liqiongyu anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT polaccobenjaminj anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT patiltrupti anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT dibertojeffreyf anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT vartakrasika anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT xujiewei anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT marleyaaron anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT foussardhelene anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT rothbryanl anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT eckhardtmanon anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT vonzastrowmark anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT krogannevanj anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT huttenhainruth anautomatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT zhongxiaofang automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT liqiongyu automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT polaccobenjaminj automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT patiltrupti automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT dibertojeffreyf automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT vartakrasika automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT xujiewei automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT marleyaaron automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT foussardhelene automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT rothbryanl automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT eckhardtmanon automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT vonzastrowmark automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT krogannevanj automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping AT huttenhainruth automatedproximityproteomicspipelineforsubcellularproteomeandproteininteractionmapping |