Cargando…

Understanding the link between functional profiles and intelligence through dimensionality reduction and graph analysis

There is a growing interest in neuroscience for how individual-specific structural and functional features of the cortex relate to cognitive traits. This work builds on previous research which, using classical high-dimensional approaches, has proven that the interindividual variability of functional...

Descripción completa

Detalles Bibliográficos
Autores principales: Alberti, F., Menardi, A., Margulies, D.S., Vallesi, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120667/
https://www.ncbi.nlm.nih.gov/pubmed/37090501
http://dx.doi.org/10.1101/2023.04.12.536421
Descripción
Sumario:There is a growing interest in neuroscience for how individual-specific structural and functional features of the cortex relate to cognitive traits. This work builds on previous research which, using classical high-dimensional approaches, has proven that the interindividual variability of functional connectivity profiles reflects differences in fluid intelligence. To provide an additional perspective into this relationship, the present study uses a recent framework for investigating cortical organization: functional gradients. This approach places local connectivity profiles within a common low-dimensional space whose axes are functionally interretable dimensions. Specifically, this study uses a data-driven approach focussing on areas where FC variability is highest across individuals to model different facets of intelligence. For one of these loci, in the right ventral-lateral prefrontal cortex (vlPFC), we describe an association between fluid intelligence and relative functional distance from sensory and high-cognition systems. Furthermore, the topological properties of this region indicate that with decreasing functional affinity with the latter, its functional connections are more evenly distributed across all networks. Participating in multiple functional networks may reflect a better ability to coordinate sensory and high-order cognitive systems.