Cargando…
Driving and suppressing the human language network using large language models
Transformer models such as GPT generate human-like language and are highly predictive of human brain responses to language. Here, using fMRI-measured brain responses to 1,000 diverse sentences, we first show that a GPT-based encoding model can predict the magnitude of brain response associated with...
Autores principales: | Tuckute, Greta, Sathe, Aalok, Srikant, Shashank, Taliaferro, Maya, Wang, Mingye, Schrimpf, Martin, Kay, Kendrick, Fedorenko, Evelina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120732/ https://www.ncbi.nlm.nih.gov/pubmed/37090673 http://dx.doi.org/10.1101/2023.04.16.537080 |
Ejemplares similares
-
Lexical semantic content, not syntactic structure, is the main contributor to ANN-brain similarity of fMRI responses in the language network
por: Kauf, Carina, et al.
Publicado: (2023) -
Probabilistic atlas for the language network based on precision fMRI data from >800 individuals
por: Lipkin, Benjamin, et al.
Publicado: (2022) -
Functional characterization of the language network of polyglots and hyperpolyglots with precision fMRI
por: Malik-Moraleda, Saima, et al.
Publicado: (2023) -
Constructed languages are processed by the same brain mechanisms as natural languages
por: Malik-Moraleda, Saima, et al.
Publicado: (2023) -
Functional Network Dynamics of the Language System
por: Chai, Lucy R., et al.
Publicado: (2016)