Cargando…
CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data
Integration of heterogeneous and high-dimensional multi-omics data is becoming increasingly important in understanding genetic data. Each omics technique only provides a limited view of the underlying biological process and integrating heterogeneous omics layers simultaneously would lead to a more c...
Autores principales: | Zhao, Chen, Liu, Anqi, Zhang, Xiao, Cao, Xuewei, Ding, Zhengming, Sha, Qiuying, Shen, Hui, Deng, Hong-Wen, Zhou, Weihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120753/ https://www.ncbi.nlm.nih.gov/pubmed/37090237 |
Ejemplares similares
-
CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data
por: Zhao, Chen, et al.
Publicado: (2023) -
Omics and Multi-Omics in IBD: No Integration, No Breakthroughs
por: Fiocchi, Claudio
Publicado: (2023) -
MONET: Multi-omic module discovery by omic selection
por: Rappoport, Nimrod, et al.
Publicado: (2020) -
Multi-view clustering for multi-omics data using unified embedding
por: Mitra, Sayantan, et al.
Publicado: (2020) -
LinkedOmics: analyzing multi-omics data within and across 32 cancer types
por: Vasaikar, Suhas V, et al.
Publicado: (2018)