Cargando…
A Comprehensive and Bias-Free Machine Learning Approach for Risk Prediction of Preeclampsia with Severe Features in a Nulliparous Study Cohort
OBJECTIVE: Preeclampsia is one of the leading causes of maternal morbidity, with consequences during and after pregnancy. Because of its diverse clinical presentation, preeclampsia is an adverse pregnancy outcome that is uniquely challenging to predict and manage. In this paper, we developed machine...
Autores principales: | Lin, Yun, MALLIA, Daniel, CLARK-SEVILLA, Andrea, CATTO, Adam, LESHCHENKO, Alisa, YAN, Qi, Haas, David, WAPNER, Ronald, PE'ER, Itsik, RAJA, Anita, SALLEB-AOUISSI, Ansaf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120773/ https://www.ncbi.nlm.nih.gov/pubmed/37090627 http://dx.doi.org/10.21203/rs.3.rs-2635419/v1 |
Ejemplares similares
-
Interpretable prediction of necrotizing enterocolitis from machine learning analysis of premature infant stool microbiota
por: Lin, Yun Chao, et al.
Publicado: (2022) -
Bias Characterization in Probabilistic Genotype Data and Improved Signal Detection with Multiple Imputation
por: Palmer, Cameron, et al.
Publicado: (2016) -
Variants in exons and in transcription factors affect gene expression in trans
por: Kreimer, Anat, et al.
Publicado: (2013) -
Co-regulated Transcripts Associated to Cooperating eSNPs Define Bi-fan Motifs in Human Gene Networks
por: Kreimer, Anat, et al.
Publicado: (2014) -
Ultrafast genome-wide scan for SNP–SNP interactions in common complex disease
por: Prabhu, Snehit, et al.
Publicado: (2012)