Cargando…
Prediction of Unplanned Hospital Readmission using Clinical and Longitudinal Wearable Sensor Features
Predictive models have been suggested as potential tools for identifying highest risk patients for hospital readmissions, in order to improve care coordination and ultimately long-term patient outcomes. However, the accuracy of current predictive models for readmission prediction is still moderate a...
Autores principales: | Yhdego, Haben H., Nayebnazar, Arshia, Amrollahi, Fatemeh, Boussina, Aaron, Shashikumar, Supreeth, Wardi, Gabriel, Nemati, Shamim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120790/ https://www.ncbi.nlm.nih.gov/pubmed/37090626 http://dx.doi.org/10.1101/2023.04.10.23288371 |
Ejemplares similares
-
Predicting Hospital Readmission among Patients with Sepsis using Clinical and Wearable Data
por: Amrollahi, Fatemeh, et al.
Publicado: (2023) -
Development & Deployment of a Real-time Healthcare Predictive Analytics Platform
por: Boussina, Aaron, et al.
Publicado: (2023) -
Representation Learning and Spectral Clustering for the Development and External Validation of Dynamic Sepsis Phenotypes: Observational Cohort Study
por: Boussina, Aaron, et al.
Publicado: (2023) -
Optimizing the Implementation of Clinical Predictive Models to Minimize National Costs: Sepsis Case Study
por: Rogers, Parker, et al.
Publicado: (2023) -
Leveraging clinical data across healthcare institutions for continual learning of predictive risk models
por: Amrollahi, Fatemeh, et al.
Publicado: (2022)