Cargando…

Collaborative optimization for train stop planning and train timetabling on high-speed railways based on passenger demand

In recent years, with increasing passenger travel demand, high-speed railways have developed rapidly. The stop planning and timetabling problems are the core contents of high-speed railway transport planning and have important practical significance for improving efficiency of passenger travel and r...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yawei, Han, Baoming, Zhao, Peng, Yang, Ruixia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121017/
https://www.ncbi.nlm.nih.gov/pubmed/37083892
http://dx.doi.org/10.1371/journal.pone.0284747
Descripción
Sumario:In recent years, with increasing passenger travel demand, high-speed railways have developed rapidly. The stop planning and timetabling problems are the core contents of high-speed railway transport planning and have important practical significance for improving efficiency of passenger travel and railway operation Dong et al. (2020). This study proposes a collaborative optimization approach that can be divided into two phases. In the first phase, a mixed-integer nonlinear programming model is constructed to obtain a stop plan by minimizing the total passenger travel time. The constraints of passenger origin-destination (OD) demand, train capacity, and stop frequency are considered in the first phase. In the second phase, the train timetable is optimized after the stop plan is obtained. A multiobjective mixed-integer linear optimization model is formulated by minimizing the total train travel time and the deviation between the expected and actual departure times from the origin station for all trains. Multiple types of trains and more refined headways are considered in the timetabling model. Finally, the approach is applied to China’s high-speed railway, and the GUROBI optimizer is used to solve the models in the above two stages. By analyzing the results, the total passenger travel time and train travel time decreased by 2.81% and 3.34% respectively. The proposed method generates a more efficient solution for the railway system.